cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241748 a(n) = n^2 + 12.

Original entry on oeis.org

12, 13, 16, 21, 28, 37, 48, 61, 76, 93, 112, 133, 156, 181, 208, 237, 268, 301, 336, 373, 412, 453, 496, 541, 588, 637, 688, 741, 796, 853, 912, 973, 1036, 1101, 1168, 1237, 1308, 1381, 1456, 1533, 1612, 1693, 1776, 1861, 1948, 2037, 2128, 2221, 2316, 2413, 2512
Offset: 0

Views

Author

Vincenzo Librandi, Apr 30 2014

Keywords

Comments

3/a(n) = R(n)/r, n >= 0, with R(n) the n-th radius of the counterclockwise Pappus chain of the arbelos with semicircle radii r, r1 = 3*r/4, r2 = r - r1 = r/4. See a comment on A114949 also for the MathWorld Pappus chain link. - Wolfdieter Lang, Jun 29 2015

Crossrefs

Cf. similar sequences listed in A114962.
Cf. A114964 (see comment), A114949.

Programs

  • Magma
    [n^2+12: n in [0..60]];
    
  • Mathematica
    Table[n^2 + 12, {n, 0, 60}]
  • PARI
    a(n)=n^2+12 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: (12-23*x+13*x^2)/(1-x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3) = a(n-1) + 2*n - 1.
(2*n)*a(n) = (n+2)^3 + (n-2)^3; also, 2*a(n) = (n+sqrt(12))^2 + (n-sqrt(12))^2. - Bruno Berselli, Mar 13 2015
From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(12)*Pi*coth(sqrt(12)*Pi))/24.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(12)*Pi*cosech(sqrt(12)*Pi))/24. (End)
E.g.f.: exp(x)*(12 + x + x^2). - Elmo R. Oliveira, Nov 29 2024