A241748 a(n) = n^2 + 12.
12, 13, 16, 21, 28, 37, 48, 61, 76, 93, 112, 133, 156, 181, 208, 237, 268, 301, 336, 373, 412, 453, 496, 541, 588, 637, 688, 741, 796, 853, 912, 973, 1036, 1101, 1168, 1237, 1308, 1381, 1456, 1533, 1612, 1693, 1776, 1861, 1948, 2037, 2128, 2221, 2316, 2413, 2512
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Kival Ngaokrajang, Illustration of Pappus chain (3/4, 1/4).
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[n^2+12: n in [0..60]];
-
Mathematica
Table[n^2 + 12, {n, 0, 60}]
-
PARI
a(n)=n^2+12 \\ Charles R Greathouse IV, Jun 17 2017
Formula
G.f.: (12-23*x+13*x^2)/(1-x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3) = a(n-1) + 2*n - 1.
(2*n)*a(n) = (n+2)^3 + (n-2)^3; also, 2*a(n) = (n+sqrt(12))^2 + (n-sqrt(12))^2. - Bruno Berselli, Mar 13 2015
From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(12)*Pi*coth(sqrt(12)*Pi))/24.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(12)*Pi*cosech(sqrt(12)*Pi))/24. (End)
E.g.f.: exp(x)*(12 + x + x^2). - Elmo R. Oliveira, Nov 29 2024
Comments