A241753 Decimal expansion of Sum_{n>=1} (H(n)/(n+1))^2, where H(n) is the n-th harmonic number.
2, 9, 7, 6, 3, 8, 8, 8, 9, 2, 7, 0, 5, 6, 3, 0, 0, 2, 6, 6, 6, 9, 0, 1, 0, 1, 6, 5, 4, 8, 8, 2, 1, 1, 7, 3, 2, 6, 3, 0, 5, 6, 5, 1, 1, 7, 7, 7, 6, 4, 9, 8, 9, 9, 6, 1, 2, 8, 1, 8, 4, 5, 9, 2, 4, 7, 1, 3, 3, 1, 6, 9, 4, 5, 1, 4, 1, 6, 4, 3, 2, 8, 0, 3, 1, 5, 0, 1, 4, 9, 8, 8, 3, 9, 6, 7, 4, 7, 7, 2
Offset: 1
Examples
2.97638889270563002666901016548821173263...
Links
- David H. Bailey and Jonathan M. Borwein, Experimental Mathematics: Examples, Methods and Implications, Notices of the AMS Volume 52, Number 5, page 506.
Crossrefs
Cf. A218505.
Programs
-
Mathematica
RealDigits[11*Pi^4/360, 10, 100] // First
-
PARI
11*Pi^4/360 \\ Stefano Spezia, May 26 2025
Formula
Equals 1/(2*Pi)*Integral_{x=0..Pi} (Pi-t)^2*log(2*sin(t/2))^2 dt.
Equals 11/17*A218505.
Equals 11*Pi^4/360. - Vaclav Kotesovec, Apr 28 2014