A384457 Decimal expansion of Sum_{k>=1} H(k)^3/2^k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.
3, 5, 9, 3, 4, 2, 7, 9, 4, 1, 7, 7, 4, 9, 4, 2, 9, 6, 0, 2, 5, 5, 1, 8, 2, 4, 0, 7, 0, 3, 3, 3, 9, 2, 1, 9, 5, 9, 1, 6, 9, 5, 4, 8, 0, 3, 5, 1, 9, 3, 3, 8, 9, 3, 7, 6, 9, 7, 3, 8, 6, 1, 1, 9, 1, 8, 8, 8, 2, 8, 1, 2, 6, 9, 6, 1, 9, 2, 6, 3, 4, 0, 3, 7, 3, 9, 5, 7, 8, 6, 7, 6, 8, 6, 4, 7, 4, 5, 8, 7, 3, 5, 5, 3, 7
Offset: 1
Examples
3.59342794177494296025518240703339219591695480351933...
References
- K. Ramachandra and R. Sitaramachandrarao, On series, integrals and continued fractions - II, Madras Univ. J., Sect. B, 51 (1988), pp. 181-198.
Links
- K. Ramachandra, On series integrals and continued fractions I, Hardy-Ramanujan Journal, Vol. 4 (1981), pp. 1-11.
- K. Ramachandra, On series, integrals and continued fractions, III, Acta Arithmetica, Vol. 99, No. 3 (2001), pp. 257-266.
Crossrefs
Programs
-
Mathematica
RealDigits[Zeta[3] + (Pi^2*Log[2] + Log[2]^3)/3, 10, 120][[1]]
-
PARI
zeta(3) + (Pi^2*log(2) + log(2)^3)/3
Formula
Equals zeta(3) + (Pi^2*log(2) + log(2)^3)/3.