cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A384457 Decimal expansion of Sum_{k>=1} H(k)^3/2^k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.

Original entry on oeis.org

3, 5, 9, 3, 4, 2, 7, 9, 4, 1, 7, 7, 4, 9, 4, 2, 9, 6, 0, 2, 5, 5, 1, 8, 2, 4, 0, 7, 0, 3, 3, 3, 9, 2, 1, 9, 5, 9, 1, 6, 9, 5, 4, 8, 0, 3, 5, 1, 9, 3, 3, 8, 9, 3, 7, 6, 9, 7, 3, 8, 6, 1, 1, 9, 1, 8, 8, 8, 2, 8, 1, 2, 6, 9, 6, 1, 9, 2, 6, 3, 4, 0, 3, 7, 3, 9, 5, 7, 8, 6, 7, 6, 8, 6, 4, 7, 4, 5, 8, 7, 3, 5, 5, 3, 7
Offset: 1

Views

Author

Amiram Eldar, May 30 2025

Keywords

Examples

			3.59342794177494296025518240703339219591695480351933...
		

References

  • K. Ramachandra and R. Sitaramachandrarao, On series, integrals and continued fractions - II, Madras Univ. J., Sect. B, 51 (1988), pp. 181-198.

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[3] + (Pi^2*Log[2] + Log[2]^3)/3, 10, 120][[1]]
  • PARI
    zeta(3) + (Pi^2*log(2) + log(2)^3)/3

Formula

Equals zeta(3) + (Pi^2*log(2) + log(2)^3)/3.

A384458 Decimal expansion of Sum_{k>=1} (-1)^(k+1)*H(k)^3/k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.

Original entry on oeis.org

2, 7, 4, 1, 2, 5, 7, 4, 6, 5, 4, 9, 2, 5, 2, 9, 7, 0, 6, 7, 8, 8, 3, 3, 0, 3, 6, 7, 8, 7, 5, 0, 4, 7, 0, 7, 6, 2, 6, 5, 4, 4, 8, 9, 2, 9, 5, 5, 7, 5, 2, 9, 6, 5, 4, 7, 1, 8, 1, 4, 6, 2, 7, 5, 5, 3, 2, 1, 6, 0, 6, 7, 5, 8, 7, 1, 4, 1, 9, 7, 0, 1, 0, 3, 5, 8, 3, 7, 2, 2, 3, 8, 6, 9, 4, 8, 6, 6, 3, 0, 7, 0, 4, 6, 6
Offset: 0

Views

Author

Amiram Eldar, May 30 2025

Keywords

Examples

			0.27412574654925297067883303678750470762654489295575...
		

References

  • Ali Shadhar Olaikhan, An Introduction to the Harmonic Series and Logarithmic Integrals, 2021, p. 245, eq. (4.149).
  • K. Ramachandra and R. Sitaramachandrarao, On series, integrals and continued fractions - II, Madras Univ. J., Sect. B, 51 (1988), pp. 181-198.

Crossrefs

Programs

  • Mathematica
    RealDigits[(Pi*Log[2])^2/8 + 5*Zeta[4]/8 - 9*Zeta[3]*Log[2]/8 - Log[2]^4/4, 10, 120][[1]]
  • PARI
    (Pi*log(2))^2/8 + 5*zeta(4)/8 - 9*zeta(3)*log(2)/8 - log(2)^4/4

Formula

Equals (Pi*log(2))^2/8 + 5*zeta(4)/8 - 9*zeta(3)*log(2)/8 - log(2)^4/4.

A384459 Decimal expansion of Sum_{k>=1} (-1)^k*(3*k+1)*H(k)^3/2^k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.

Original entry on oeis.org

1, 6, 4, 4, 0, 1, 9, 5, 3, 8, 9, 3, 1, 6, 5, 4, 2, 9, 6, 5, 2, 6, 3, 6, 2, 1, 6, 5, 0, 3, 0, 2, 3, 1, 1, 4, 0, 6, 4, 4, 1, 3, 0, 5, 1, 5, 1, 9, 0, 4, 1, 8, 1, 5, 9, 8, 1, 6, 6, 2, 1, 1, 5, 9, 4, 3, 8, 9, 1, 7, 3, 1, 0, 0, 7, 1, 4, 2, 1, 2, 7, 6, 4, 9, 2, 3, 1, 6, 3, 5, 1, 5, 5, 1, 5, 7, 6, 5, 5, 9, 4, 4, 8, 6, 0
Offset: 0

Views

Author

Amiram Eldar, May 30 2025

Keywords

Examples

			0.16440195389316542965263621650302311406441305151904...
		

References

  • K. Ramachandra and R. Sitaramachandrarao, On series, integrals and continued fractions - II, Madras Univ. J., Sect. B, 51 (1988), pp. 181-198.

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[3/2]^2, 10, 120][[1]]
  • PARI
    log(3/2)^2

Formula

Equals A016578^2 = log(3/2)^2 (Ramachandra, 1981).
Equals Sum_{k>=1} (-1)^(k+1)*H(k)/((k+1)*2^k), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number (Shamos, 2011).

A384460 Decimal expansion of Sum_{k>=1} (-1)^(k+1)*H(k)^2/k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.

Original entry on oeis.org

4, 4, 2, 4, 6, 0, 1, 8, 9, 3, 7, 7, 9, 1, 2, 4, 9, 5, 2, 1, 8, 7, 9, 8, 2, 1, 9, 1, 7, 4, 6, 5, 6, 3, 3, 5, 1, 8, 4, 1, 3, 3, 6, 2, 7, 0, 2, 2, 5, 8, 3, 5, 8, 5, 8, 6, 4, 2, 6, 3, 2, 9, 3, 4, 7, 1, 2, 3, 6, 3, 9, 2, 6, 3, 0, 8, 6, 1, 0, 9, 8, 3, 6, 6, 5, 3, 1, 3, 5, 5, 1, 6, 5, 3, 1, 0, 1, 9, 7, 0, 9, 4, 8, 8, 3
Offset: 0

Views

Author

Amiram Eldar, May 30 2025

Keywords

Examples

			0.44246018937791249521879821917465633518413362702258...
		

References

  • Ovidiu Furdui, Limits, Series, and Fractional Part Integrals, Springer, 2013, section 3.4, p. 148.

Crossrefs

Programs

  • Mathematica
    RealDigits[(9*Zeta[3] + 4*Log[2]^3 - Pi^2*Log[2])/12, 10, 120][[1]]
  • PARI
    (9*zeta(3) + 4*log(2)^3 - Pi^2*log(2))/12

Formula

Equals (9*zeta(3) + 4*log(2)^3 - Pi^2*log(2))/12.

A384461 Decimal expansion of Sum_{k>=1} H(k)^4/k^2, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.

Original entry on oeis.org

4, 5, 8, 3, 3, 9, 4, 1, 4, 6, 5, 4, 1, 6, 5, 5, 7, 1, 9, 2, 5, 9, 5, 7, 6, 5, 7, 8, 9, 1, 4, 2, 2, 6, 3, 3, 4, 8, 8, 7, 9, 5, 1, 1, 3, 3, 1, 5, 4, 8, 4, 8, 4, 2, 3, 2, 5, 4, 9, 2, 2, 2, 5, 7, 1, 5, 3, 9, 1, 3, 5, 1, 9, 5, 9, 3, 6, 4, 2, 8, 2, 2, 3, 7, 0, 0, 0, 6, 7, 8, 1, 2, 2, 9, 8, 2, 9, 9, 6, 0, 6, 5, 2, 7, 4
Offset: 2

Views

Author

Amiram Eldar, May 30 2025

Keywords

Examples

			45.83394146541655719259576578914226334887951133154848...
		

References

  • Ali Shadhar Olaikhan, An Introduction to the Harmonic Series and Logarithmic Integrals, 2021, p. 230, eq. (4.122).

Crossrefs

Programs

  • Mathematica
    RealDigits[979*Zeta[6]/24 + 3*Zeta[3]^2, 10, 120][[1]]
  • PARI
    979*zeta(6)/24 + 3*zeta(3)^2

Formula

Equals 979*zeta(6)/24 + 3*zeta(3)^2.

A384462 Decimal expansion of Sum_{k>=1} H(k)^3/k^3, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.

Original entry on oeis.org

2, 3, 0, 0, 9, 5, 4, 5, 5, 1, 7, 0, 0, 5, 2, 5, 0, 3, 9, 8, 0, 6, 4, 2, 2, 7, 6, 9, 8, 9, 2, 2, 5, 6, 0, 0, 0, 4, 6, 9, 9, 7, 5, 6, 4, 6, 4, 0, 6, 2, 3, 9, 6, 4, 2, 8, 8, 0, 4, 1, 4, 9, 5, 4, 7, 7, 8, 7, 2, 1, 1, 7, 2, 7, 8, 9, 2, 4, 5, 0, 2, 6, 5, 2, 8, 1, 4, 1, 0, 0, 0, 4, 7, 1, 4, 4, 1, 9, 7, 7, 0, 5, 7, 4, 1
Offset: 1

Views

Author

Amiram Eldar, May 30 2025

Keywords

Examples

			2.30095455170052503980642276989225600046997564640623...
		

References

  • Ali Shadhar Olaikhan, An Introduction to the Harmonic Series and Logarithmic Integrals, 2021, p. 231, eq. (4.126).

Crossrefs

Programs

  • Mathematica
    RealDigits[93*Zeta[6]/16 - 5*Zeta[3]^2/2, 10, 120][[1]]
  • PARI
    93*zeta(6)/16 - 5*zeta(3)^2/2

Formula

Equals 93*zeta(6)/16 - 5*zeta(3)^2/2.
Showing 1-6 of 6 results.