A241786 Smallest k such that the number of the first even exponents in prime power factorization of (2*k)! is n, or a(n)=0 if there is no such k.
1, 6, 3, 5, 10, 24, 27, 169, 924, 3168, 720, 3208, 408, 35421, 50878, 73920, 18757, 204513, 134418, 295680, 427684, 2746710, 6867848, 14476645, 7278558, 3668406, 737564, 245340483, 1931850660, 1514239096, 3228582476, 1325085081, 16188866895, 33517640073
Offset: 0
Keywords
Examples
a(2)=3, since (2*3)!= 2^4*3^2*5, and here the number of the first even exponents is 2.
References
- P. Erdős, P. L. Graham, Old and new problems and results in combinatorial number theory, L'Enseignement Mathematique, Imprimerie Kunding, Geneva, 1980.
Links
- Giovanni Resta, Table of n, a(n) for n = 0..44 (terms a(0)-a(34) and a(36) from Hiroaki Yamanouchi)
- D. Berend, Parity of exponents in the factorization of n!, J. Number Theory, 64 (1997), 13-19.
Programs
-
PARI
nbev(n) = {f = factor(n); nbe = 0; i = 1; while ((i <= #f~) && ((f[i, 2] % 2) == 0), i++; nbe++); nbe;} a(n) = {k = 0; while(nbev((2*k)!) != n, k++); k;} \\ Michel Marcus, Apr 30 2014
Extensions
More terms from Peter J. C. Moses, May 06 2014
a(21)-a(33) from Hiroaki Yamanouchi, Sep 29 2014
Comments