cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241889 a(n) = n^2 + 23.

Original entry on oeis.org

23, 24, 27, 32, 39, 48, 59, 72, 87, 104, 123, 144, 167, 192, 219, 248, 279, 312, 347, 384, 423, 464, 507, 552, 599, 648, 699, 752, 807, 864, 923, 984, 1047, 1112, 1179, 1248, 1319, 1392, 1467, 1544, 1623, 1704, 1787, 1872, 1959, 2048, 2139, 2232, 2327, 2424, 2523
Offset: 0

Views

Author

Vincenzo Librandi, May 01 2014

Keywords

Crossrefs

Cf. similar sequences listed in A114962.

Programs

  • Magma
    [n^2+23: n in [0..60]];
    
  • Mathematica
    CoefficientList[Series[(23 - 45 x + 24 x^2)/(1 - x)^3,{x, 0, 60}], x]
    Range[0, 50]^2 + 23 (* or *) LinearRecurrence[{3, -3, 1}, {23, 24, 27}, 50] (* Harvey P. Dale, May 27 2014 *)
  • PARI
    a(n)=n^2+23 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: (23 - 45*x + 24*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3) = a(n-1) + 2*n - 1.
From Amiram Eldar, Nov 04 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(23)*Pi*coth(sqrt(23)*Pi))/46.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(23)*Pi*cosech(sqrt(23)*Pi))/46. (End)
E.g.f.: exp(x)*(23 + x + x^2). - Elmo R. Oliveira, Nov 29 2024