cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241916 a(2^k) = 2^k, and for other numbers, if n = 2^e1 * 3^e2 * 5^e3 * ... p_k^e_k, then a(n) = 2^(e_k - 1) * 3^(e_{k-1}) * ... * p_{k-1}^e2 * p_k^(e1+1). Here p_k is the greatest prime factor of n (A006530), and e_k is its exponent (A071178), and the exponents e1, ..., e_{k-1} >= 0.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 7, 8, 6, 25, 11, 27, 13, 49, 15, 16, 17, 18, 19, 125, 35, 121, 23, 81, 10, 169, 12, 343, 29, 75, 31, 32, 77, 289, 21, 54, 37, 361, 143, 625, 41, 245, 43, 1331, 45, 529, 47, 243, 14, 50, 221, 2197, 53, 36, 55, 2401, 323, 841, 59, 375, 61, 961, 175, 64
Offset: 1

Views

Author

Antti Karttunen, May 03 2014

Keywords

Comments

For other numbers than the powers of 2 (that are fixed), this permutation reverses the sequence of exponents in the prime factorization of n from the exponent of 2 to that of the largest prime factor, except that the exponents of 2 and the greatest prime factor present are adjusted by one. Note that some of the exponents might be zeros.
Self-inverse permutation of natural numbers, composition of A122111 & A241909 in either order: a(n) = A122111(A241909(n)) = A241909(A122111(n)).
This permutation preserves both bigomega and the (index of) largest prime factor: for all n it holds that A001222(a(n)) = A001222(n) and A006530(a(n)) = A006530(n) [equally: A061395(a(n)) = A061395(n)].
From the above it follows, that this fixes both primes (A000040) and powers of two (A000079), among other numbers.
Even positions from n=4 onward contain only terms of A070003, and the odd positions only the terms of A102750, apart from 1 which is at a(1), and 2 which is at a(2).

Crossrefs

A241912 gives the fixed points; A241913 their complement.
{A000027, A122111, A241909, A241916} form a 4-group.
The sum of prime indices of a(n) is A243503(n).
Even bisection of A358195 = Heinz numbers of rows of A358172.
A112798 lists prime indices, length A001222, sum A056239.

Programs

  • Mathematica
    nn = 65; f[n_] := If[n == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ n]; g[w_List] := Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, w]; Table[If[IntegerQ@ #, n/4, g@ Reverse@(# - Join[{1}, ConstantArray[0, Length@ # - 2], {1}] &@ f@ n)] &@ Log2@ n, {n, 4, 4 nn, 4}] (* Michael De Vlieger, Aug 27 2016 *)
  • PARI
    A209229(n) = (n && !bitand(n,n-1));
    A241916(n) = if(1==A209229(n), n, my(f = factor(2*n), nbf = #f~, igp = primepi(f[nbf,1]), g = f); for(i=1,nbf,g[i,1] = prime(1+igp-primepi(f[i,1]))); factorback(g)/2); \\ Antti Karttunen, Jul 02 2018
    
  • Scheme
    (define (A241916 n) (A122111 (A241909 n)))

Formula

a(1)=1, and for n>1, a(n) = A006530(n) * A137502(n)/2.
a(n) = A122111(A241909(n)) = A241909(A122111(n)).
If 2n has prime factorization Product_{i=1..k} prime(x_i), then a(n) = Product_{i=1..k-1} prime(x_k-x_i+1). The opposite version is A000027, even bisection of A246277. - Gus Wiseman, Dec 28 2022

Extensions

Description clarified by Antti Karttunen, Jul 02 2018