A241917 If n is a prime with index i, p_i, a(n) = i, (with a(1)=0), otherwise difference (i-j) of the indices of the two largest primes p_i, p_j, i >= j in the prime factorization of n: a(n) = A061395(n) - A061395(A052126(n)).
0, 1, 2, 0, 3, 1, 4, 0, 0, 2, 5, 1, 6, 3, 1, 0, 7, 0, 8, 2, 2, 4, 9, 1, 0, 5, 0, 3, 10, 1, 11, 0, 3, 6, 1, 0, 12, 7, 4, 2, 13, 2, 14, 4, 1, 8, 15, 1, 0, 0, 5, 5, 16, 0, 2, 3, 6, 9, 17, 1, 18, 10, 2, 0, 3, 3, 19, 6, 7, 1, 20, 0, 21, 11, 0, 7, 1, 4, 22, 2, 0, 12, 23
Offset: 1
Keywords
Links
Crossrefs
Programs
-
Haskell
a241917 n = i - j where (i:j:_) = map a049084 $ reverse (1 : a027746_row n) -- Reinhard Zumkeller, May 15 2014
-
PARI
A241917(n) = if(isprime(n), primepi(n), if(1>=omega(n), 0, my(f=factor(n)); if(f[#f~,2]>1, 0, primepi(f[#f~,1])-primepi(f[(#f~)-1,1])))); \\ Antti Karttunen, Jul 10 2024
-
Python
from sympy import primefactors, primepi def a061395(n): return 0 if n==1 else primepi(primefactors(n)[-1]) def a052126(n): return 1 if n==1 else n/primefactors(n)[-1] def a(n): return 0 if n==1 else a061395(n) - a061395(a052126(n)) # Indranil Ghosh, May 19 2017
-
Scheme
(define (A241917 n) (- (A061395 n) (A061395 (A052126 n))))
Comments