cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241917 If n is a prime with index i, p_i, a(n) = i, (with a(1)=0), otherwise difference (i-j) of the indices of the two largest primes p_i, p_j, i >= j in the prime factorization of n: a(n) = A061395(n) - A061395(A052126(n)).

Original entry on oeis.org

0, 1, 2, 0, 3, 1, 4, 0, 0, 2, 5, 1, 6, 3, 1, 0, 7, 0, 8, 2, 2, 4, 9, 1, 0, 5, 0, 3, 10, 1, 11, 0, 3, 6, 1, 0, 12, 7, 4, 2, 13, 2, 14, 4, 1, 8, 15, 1, 0, 0, 5, 5, 16, 0, 2, 3, 6, 9, 17, 1, 18, 10, 2, 0, 3, 3, 19, 6, 7, 1, 20, 0, 21, 11, 0, 7, 1, 4, 22, 2, 0, 12, 23
Offset: 1

Views

Author

Antti Karttunen, May 13 2014

Keywords

Comments

Note: the two largest primes in the multiset of prime divisors of n are equal for all numbers that are in A070003, thus, after a(1)=0, A070003 gives the positions of the other zeros in this sequence.

Crossrefs

Cf. A241919, A242411, A243055 for other variants.

Programs

  • Haskell
    a241917 n = i - j where
                (i:j:_) = map a049084 $ reverse (1 : a027746_row n)
    -- Reinhard Zumkeller, May 15 2014
    
  • PARI
    A241917(n) = if(isprime(n), primepi(n), if(1>=omega(n), 0, my(f=factor(n)); if(f[#f~,2]>1, 0, primepi(f[#f~,1])-primepi(f[(#f~)-1,1])))); \\ Antti Karttunen, Jul 10 2024
  • Python
    from sympy import primefactors, primepi
    def a061395(n): return 0 if n==1 else primepi(primefactors(n)[-1])
    def a052126(n): return 1 if n==1 else n/primefactors(n)[-1]
    def a(n): return 0 if n==1 else a061395(n) - a061395(a052126(n)) # Indranil Ghosh, May 19 2017
    
  • Scheme
    (define (A241917 n) (- (A061395 n) (A061395 (A052126 n))))
    

Formula

a(n) = A061395(n) - A061395(A052126(n)).