cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241919 If n is a prime power, p_i^e, a(n) = i, (with a(1)=0), otherwise difference (i-j) of the indices of the two largest distinct primes p_i, p_j, i > j in the prime factorization of n: a(n) = A061395(n) - A061395(A051119(n)).

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 4, 1, 2, 2, 5, 1, 6, 3, 1, 1, 7, 1, 8, 2, 2, 4, 9, 1, 3, 5, 2, 3, 10, 1, 11, 1, 3, 6, 1, 1, 12, 7, 4, 2, 13, 2, 14, 4, 1, 8, 15, 1, 4, 2, 5, 5, 16, 1, 2, 3, 6, 9, 17, 1, 18, 10, 2, 1, 3, 3, 19, 6, 7, 1, 20, 1, 21, 11, 1, 7, 1, 4, 22, 2, 2, 12, 23
Offset: 1

Views

Author

Antti Karttunen, May 13 2014

Keywords

Comments

See A242411 and A241917 for other variants.

Crossrefs

Programs

  • Haskell
    a241919 1 = 0
    a241919 n = i - j where
                (i:j:_) = map a049084 $ reverse (1 : a027748_row n)
    -- Reinhard Zumkeller, May 15 2014
    
  • Python
    from sympy import factorint, primefactors, primepi
    def a061395(n): return 0 if n==1 else primepi(primefactors(n)[-1])
    def a053585(n):
        if n==1: return 1
        p = primefactors(n)[-1]
        return p**factorint(n)[p]
    def a051119(n): return n/a053585(n)
    def a(n): return a061395(n) - a061395(a051119(n)) # Indranil Ghosh, May 19 2017
  • Scheme
    (define (A241919 n) (- (A061395 n) (A061395 (A051119 n))))
    

Formula

a(n) = A061395(n) - A061395(A051119(n)).