A241919 If n is a prime power, p_i^e, a(n) = i, (with a(1)=0), otherwise difference (i-j) of the indices of the two largest distinct primes p_i, p_j, i > j in the prime factorization of n: a(n) = A061395(n) - A061395(A051119(n)).
0, 1, 2, 1, 3, 1, 4, 1, 2, 2, 5, 1, 6, 3, 1, 1, 7, 1, 8, 2, 2, 4, 9, 1, 3, 5, 2, 3, 10, 1, 11, 1, 3, 6, 1, 1, 12, 7, 4, 2, 13, 2, 14, 4, 1, 8, 15, 1, 4, 2, 5, 5, 16, 1, 2, 3, 6, 9, 17, 1, 18, 10, 2, 1, 3, 3, 19, 6, 7, 1, 20, 1, 21, 11, 1, 7, 1, 4, 22, 2, 2, 12, 23
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a241919 1 = 0 a241919 n = i - j where (i:j:_) = map a049084 $ reverse (1 : a027748_row n) -- Reinhard Zumkeller, May 15 2014
-
Python
from sympy import factorint, primefactors, primepi def a061395(n): return 0 if n==1 else primepi(primefactors(n)[-1]) def a053585(n): if n==1: return 1 p = primefactors(n)[-1] return p**factorint(n)[p] def a051119(n): return n/a053585(n) def a(n): return a061395(n) - a061395(a051119(n)) # Indranil Ghosh, May 19 2017
-
Scheme
(define (A241919 n) (- (A061395 n) (A061395 (A051119 n))))
Comments