cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241956 Number of inequivalent m X n binary matrices, where equivalence means permutations of rows or columns. Presented in diagonal order, with (m,n)=(1,1), (1,2), (2,1), (1,3), (2,2), (3,1), ... .

Original entry on oeis.org

2, 3, 3, 4, 7, 4, 5, 13, 13, 5, 6, 22, 36, 22, 6, 7, 34, 87, 87, 34, 7, 8, 50, 190, 317, 190, 50, 8, 9, 70, 386, 1053, 1053, 386, 70, 9, 10, 95, 734, 3250, 5624, 3250, 734, 95, 10, 11, 125, 1324, 9343, 28576, 28576, 9343, 1324, 125, 11
Offset: 1

Views

Author

Don Knuth, Aug 09 2014

Keywords

Comments

Same as A028657 without first row and column.

Examples

			The array begins:
  2  3    4     5      6        7         8           9 ...
  3  7   13    22     34       50        70          95 ...
  4 13   36    87    190      386       734        1324 ...
  5 22   87   317   1053     3250      9343       25207 ...
  6 34  190  1053   5624    28576    136758      613894 ...
  7 50  386  3250  28576   251610   2141733    17256831 ...
  8 70  734  9343 136758  2141733  33642660   508147108 ...
  9 95 1324 25207 613894 17256831 508147108 14685630688 ...
  (cf. A028657).
		

Crossrefs

Cf. A002724.

Programs

  • Maple
    b:= proc(n, i) b(n, i):= `if`(n=0, [[]], `if`(i<1, [], [seq(map(
          p->`if`(j=0, p, [p[], [i, j]]), b(n-i*j, i-1))[], j=0..n/i)]))
        end:
    g:= proc(n, k) option remember; add(add(2^add(add(i[2]*j[2]*
          igcd(i[1], j[1]), j=t), i=s) /mul(i[1]^i[2]*i[2]!, i=s)
          /mul(i[1]^i[2]*i[2]!, i=t), t=b(n+k$2)), s=b(n$2))
        end:
    A:= (m, n)-> g(min(m, n), abs(m-n)):
    seq(seq(A(m, 1+d-m), m=1..d), d=1..12); # Alois P. Heinz, Aug 13 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Union[Flatten[Table[ Function[{p}, p + j*x^i] /@ b[n - i*j, i - 1], {j, 0, n/i}]]]]];
    g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n - k]];
    Table[A[n - k + 1, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 09 2019, after Alois P. Heinz in A028657 *)