A242093
Number A(n,k) of inequivalent n X k binary matrices, where equivalence means permutations of rows or columns or the symbol set; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 5, 2, 1, 1, 3, 8, 8, 3, 1, 1, 3, 14, 18, 14, 3, 1, 1, 4, 20, 47, 47, 20, 4, 1, 1, 4, 30, 95, 173, 95, 30, 4, 1, 1, 5, 40, 200, 545, 545, 200, 40, 5, 1, 1, 5, 55, 367, 1682, 2812, 1682, 367, 55, 5, 1, 1, 6, 70, 674, 4745, 14386, 14386, 4745, 674, 70, 6, 1
Offset: 0
A(1,4) = 3: [0 0 0 0], [1 0 0 0], [1 1 0 0].
A(1,5) = 3: [0 0 0 0 0], [1 0 0 0 0], [1 1 0 0 0].
A(2,2) = 5:
[0 0] [1 0] [1 1] [1 0] [1 0]
[0 0], [0 0], [0 0], [1 0], [0 1].
A(3,2) = 8:
[0 0] [1 0] [1 1] [1 0] [1 0] [1 0] [1 0] [1 1]
[0 0], [0 0], [0 0], [1 0], [0 1], [1 0], [0 1], [1 0].
[0 0] [0 0] [0 0] [0 0] [0 0] [1 0] [1 0] [0 0]
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 2, 3, 3, 4, 4, ...
1, 2, 5, 8, 14, 20, 30, 40, ...
1, 2, 8, 18, 47, 95, 200, 367, ...
1, 3, 14, 47, 173, 545, 1682, 4745, ...
1, 3, 20, 95, 545, 2812, 14386, 68379, ...
1, 4, 30, 200, 1682, 14386, 126446, 1072086, ...
1, 4, 40, 367, 4745, 68379, 1072086, 16821330, ...
Columns (or rows) k=0-10 give:
A000012,
A008619,
A006918(n+1),
A246148,
A246149,
A246150,
A246151,
A246152,
A246153,
A246154,
A246155.
-
with(numtheory):
b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(i<1, {},
{seq(map(p-> p+j*x^i, b(n-i*j, i-1) )[], j=0..n/i)}))
end:
g:= proc(n, k) option remember; add(add(add(mul(mul(add(d*
coeff(u, x, d), d=divisors(ilcm(i, j)))^(igcd(i, j)*
coeff(s, x, i)*coeff(t, x, j)), j=1..degree(t)),
i=1..degree(s))/mul(i^coeff(u, x, i)*coeff(u, x, i)!,
i=1..degree(u))/mul(i^coeff(t, x, i)*coeff(t, x, i)!,
i=1..degree(t))/mul(i^coeff(s, x, i)*coeff(s, x, i)!,
i=1..degree(s)), u=b(2$2)), t=b(n$2)), s=b(k$2))
end:
A:= (n, k)-> g(sort([n, k])[]):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten[Table[Map[ Function[p, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]]];
g[n_, k_] := g[n, k] = Sum[Sum[Sum[Product[Product[With[{gc = GCD[i, j]* Coefficient[s, x, i]*Coefficient[t, x, j]}, If[gc == 0, 1, Sum[d* Coefficient[u, x, d], {d, Divisors[LCM[i, j]]}]^gc]], {j, 1, Exponent[t, x]}],
{i, Exponent[s, x]}]/Product[i^Coefficient[u, x, i]*Coefficient[u, x, i]!,
{i, Exponent[u, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!,
{i, Exponent[t, x]}]/Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!,
{i, Exponent[s, x]}], {u, b[2, 2]}], {t, b[n, n]}], {s, b[k, k]}];
A[n_, k_] := g @@ Sort[{n, k}];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Apr 25 2016, adapted from Maple, updated Jan 01 2021 *)
A180985
Array T(n,k) = number of n X k binary matrices with rows and columns in lexicographically nondecreasing order.
Original entry on oeis.org
2, 3, 3, 4, 7, 4, 5, 14, 14, 5, 6, 25, 45, 25, 6, 7, 41, 130, 130, 41, 7, 8, 63, 336, 650, 336, 63, 8, 9, 92, 785, 2942, 2942, 785, 92, 9, 10, 129, 1682, 11819, 24520, 11819, 1682, 129, 10, 11, 175, 3351, 42305, 183010, 183010, 42305, 3351, 175, 11, 12, 231, 6280, 136564
Offset: 1
Table starts:
..2...3.....4.......5.........6...........7.............8................9
..3...7....14......25........41..........63............92..............129
..4..14....45.....130.......336.........785..........1682.............3351
..5..25...130.....650......2942.......11819.........42305...........136564
..6..41...336....2942.....24520......183010.......1202234..........6979061
..7..63...785...11819....183010.....2625117......33345183........371484319
..8..92..1682...42305...1202234....33345183.....836488618......18470742266
..9.129..3351..136564...6979061...371484319...18470742266.....818230288201
.10.175..6280..402910..36211867..3651371519..358194085968...31887670171373
.11.231.11176.1099694.170079565.32017940222.6148026957098.1096628939510047
.
All solutions for 3 X 3:
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..0....0..0..1....0..0..1....0..0..1....0..1..1....0..0..0
..0..0..1....0..1..1....0..1..0....0..0..1....0..1..1....0..1..1....1..1..1
.
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..1....0..0..1
..0..0..1....0..1..1....0..0..1....0..1..1....0..1..1....0..1..0....0..1..0
..1..1..0....1..0..0....1..1..1....1..0..1....1..1..1....0..1..0....0..1..1
.
..0..0..1....0..0..1....0..0..1....0..0..1....0..0..1....0..0..1....0..0..1
..0..0..1....0..0..1....0..0..1....0..1..1....0..1..0....0..1..0....0..1..0
..0..1..0....0..0..1....0..1..1....0..1..1....1..0..0....1..1..0....1..0..1
.
..0..0..1....0..0..1....0..0..1....0..0..1....0..0..1....0..0..1....0..0..1
..0..1..0....0..0..1....0..1..1....0..1..1....0..0..1....0..1..1....0..1..1
..1..1..1....1..1..0....1..0..0....1..1..0....1..1..1....1..0..1....1..1..1
.
..0..0..0....0..0..1....0..0..1....0..0..1....0..1..1....0..1..1....0..1..1
..1..1..1....1..1..0....1..1..0....1..1..1....0..1..1....0..1..1....0..1..1
..1..1..1....1..1..0....1..1..1....1..1..1....0..1..1....1..0..0....1..0..1
...
..0..1..1....0..1..1....0..1..1....0..1..1....0..1..1....0..1..1....0..1..1
..0..1..1....1..0..0....1..0..0....1..0..0....1..0..1....1..0..1....1..0..1
..1..1..1....1..0..0....1..0..1....1..1..1....1..1..0....1..0..1....1..1..1
.
..0..1..1....1..1..1
..1..1..1....1..1..1
..1..1..1....1..1..1
Cf.
A241956 (similar but different).
-
A180985(h,w,cnt=0)={ local(A=matrix(h,w), z(r,c)=!while(r1 && z(r,c), c--); while(c>1, A[r,c--]=0); while(r>1, A[r--,]=A[r+1,]); next(3))); break); cnt} \\ M. F. Hasler, Apr 27 2022
A363349
Array read by antidiagonals: T(n,k) is the number of equivalence classes of n X k binary matrices under permutation of rows and columns and complementation of columns.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 4, 4, 3, 1, 1, 1, 5, 7, 8, 3, 1, 1, 1, 6, 11, 19, 10, 4, 1, 1, 1, 7, 16, 41, 32, 16, 4, 1, 1, 1, 8, 23, 81, 101, 68, 20, 5, 1, 1, 1, 9, 31, 153, 299, 301, 114, 29, 5, 1, 1, 1, 10, 41, 273, 849, 1358, 757, 210, 35, 6, 1
Offset: 0
Array begins:
======================================================
n/k| 0 1 2 3 4 5 6 7 8 ...
---+--------------------------------------------------
0 | 1 1 1 1 1 1 1 1 1 ...
1 | 1 1 1 1 1 1 1 1 1 ...
2 | 1 2 3 4 5 6 7 8 9 ...
3 | 1 2 4 7 11 16 23 31 41 ...
4 | 1 3 8 19 41 81 153 273 468 ...
5 | 1 3 10 32 101 299 849 2290 5901 ...
6 | 1 4 16 68 301 1358 6128 27008 114763 ...
7 | 1 4 20 114 757 5567 43534 343656 2645494 ...
8 | 1 5 29 210 1981 23350 319119 4633380 67013431 ...
...
- Andrew Howroyd, Table of n, a(n) for n = 0..1325
- M. A. Harrison, On the number of classes of binary matrices, IEEE Trans. Computers, 22 (1973), 1048-1051.
- M. A. Harrison, On the number of classes of binary matrices, IEEE Transactions on Computers, C-22.12 (1973), 1048-1052. (Annotated scanned copy)
A259344 is the same array without the first row and column read by upward antidiagonals.
-
\\ Compare A028657.
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t)={sum(j=1, #q, gcd(t, q[j]))}
T(n, k)={if(n==0, 1, my(s=0); forpart(q=n, my(e=1<
Showing 1-3 of 3 results.
Comments