cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A006381 Number of n X 3 binary matrices under row and column permutations and column complementations.

Original entry on oeis.org

1, 1, 4, 7, 19, 32, 68, 114, 210, 336, 562, 862, 1349, 1987, 2950, 4201, 5991, 8278, 11422, 15386, 20660, 27218, 35718, 46158, 59401, 75475, 95494, 119545, 149035, 184118, 226562, 276620, 336470, 406490, 489344, 585572, 698397, 828549, 979896
Offset: 0

Views

Author

Keywords

Comments

Also the number of ways in which to label the vertices of the cube (or faces of the octahedron) with nonnegative integers summing to n, where labelings that differ only by rotation or reflection are considered the same. - Isabel C. Lugo (izzycat(AT)gmail.com), Aug 26 2004

Examples

			Representatives of the seven classes of 3 X 3 binary matrices are:
[ 1 1 1 ] [ 1 1 0 ] [ 1 0 1 ] [ 1 0 1 ] [ 0 1 1 ] [ 0 1 1 ] [ 0 1 1 ]
[ 1 1 1 ] [ 1 1 1 ] [ 1 1 0 ] [ 1 1 0 ] [ 1 0 1 ] [ 1 0 0 ] [ 1 0 0 ]
[ 1 1 1 ] [ 1 1 1 ] [ 1 1 1 ] [ 1 1 0 ] [ 1 1 0 ] [ 1 1 1 ] [ 1 0 0 ].
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • PARI
    Vec((1/(1 - x^1)^8 + 13/(1 - x^2)^4 + 6/(1 - x^1)^4/(1 - x^2)^2 + 12/(1 - x^4)^2 + 8/(1 - x^1)^2/(1 - x^3)^2 + 8/(1 - x^2)^1/(1 - x^6)^1)/48 + O(x^41)) \\ Andrew Howroyd, May 30 2023

Formula

G.f.: (1/(1 - x^1)^8 + 13/(1 - x^2)^4 + 6/(1 - x^1)^4/(1 - x^2)^2 + 12/(1 - x^4)^2 + 8/(1 - x^1)^2/(1 - x^3)^2 + 8/(1 - x^2)^1/(1 - x^6)^1)/48.
G.f.: (x^14 - 2*x^13 + 3*x^12 - 2*x^11 + 5*x^10 - 4*x^9 + 7*x^8 - 4*x^7 + 7*x^6 - 4*x^5 + 5*x^4 - 2*x^3 + 3*x^2 - 2*x + 1)/(x^6 - 1)/(x^2 + 1)^2/(x^2 + x + 1)/(x + 1)^3/(x - 1)^7.

Extensions

Entry revised by Vladeta Jovovic, Aug 05 2000
Definition corrected by Max Alekseyev, Feb 05 2010

A006382 Number of n X 4 binary matrices under row and column permutations and column complementations.

Original entry on oeis.org

1, 1, 5, 11, 41, 101, 301, 757, 1981, 4714, 11133, 24763, 53818, 111941, 226857, 444260, 848620, 1576226, 2862426, 5077454, 8827758, 15043096, 25183794, 41434222, 67108437, 107051463, 168402958, 261384026, 400684767, 606936536
Offset: 0

Views

Author

Keywords

Examples

			Representatives of the five classes of 2 X 4 binary matrices are:
[ 1 1 1 1 ] [ 1 1 1 0 ] [ 1 1 0 1 ] [ 1 0 1 1 ] [ 0 1 1 1 ]
[ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 0 ] [ 1 1 0 0 ] [ 1 0 0 0 ]
		

References

  • M. A. Harrison, On the number of classes of binary matrices, IEEE Trans. Computers, 22 (1973), 1048-1051.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=4 of A363349.

Formula

G.f. : (1/(1 - x^1)^16 + 51/(1 - x^2)^8 + 12/(1 - x^1)^8/(1 - x^2)^4 + 84/(1 - x^4)^4 + 12/(1 - x^1 )^4/(1 - x^2)^6 + 32/(1 - x^1)^4/(1 - x^3)^4 + 96/(1 - x^2)^2/(1 - x^6)^2 + 48/(1 - x^1)^2/(1 - x^2)^1/(1 - x^4)^3 + 48/(1 - x^8)^2)/384.

Extensions

Entry revised by Vladeta Jovovic, Aug 05 2000

A006380 Number of equivalence classes of 4 X n binary matrices when one can permute rows, permute columns and complement columns.

Original entry on oeis.org

1, 3, 8, 19, 41, 81, 153, 273, 468, 774, 1240, 1930, 2933, 4356, 6341, 9064, 12743, 17643, 24093, 32479, 43270, 57019, 74377, 96103, 123089, 156354, 197081, 246622, 306519, 378520, 464614, 567028, 688276, 831169, 998845, 1194793, 1422899, 1687447, 1993182
Offset: 0

Views

Author

Keywords

References

  • M. A. Harrison, On the number of classes of binary matrices, IEEE Trans. Computers, 22 (1973), 1048-1051.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row n=4 of A363349.

Programs

  • Mathematica
    LinearRecurrence[{4,-5,2,-2,2,5,-8,6,-8,5,2,-2,2,-5,4,-1},{1,3,8,19,41,81,153,273,468,774,1240,1930,2933,4356,6341,9064},40] (* Harvey P. Dale, Nov 23 2024 *)
  • PARI
    Vec((1 - x + x^2 + x^4 + x^6 - x^7 + x^8)/((1 - x)^8*(1 + x)^2*(1 + x^2)*(1 + x + x^2)^2) + O(x^41)) \\ Andrew Howroyd, May 30 2023

Formula

G.f.: (1 - x + x^2 + x^4 + x^6 - x^7 + x^8)/((1 - x)^8*(1 + x)^2*(1 + x^2)*(1 + x + x^2)^2). - Andrew Howroyd, May 30 2023

Extensions

Terms a(7) onwards from Max Alekseyev, Feb 05 2010

A006383 Number of equivalence classes of n X n binary matrices when one can permute rows, permute columns and complement columns.

Original entry on oeis.org

1, 1, 3, 7, 41, 299, 6128, 343656, 67013431, 45770163273, 108577103160005, 886929528971819040, 24943191706060101926577, 2425246700258693990625775794, 820270898724825121532156178527106
Offset: 0

Views

Author

Keywords

Examples

			a(2) = 3:
00 10 11
00 00 00
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Main diagonal of A363349.

Extensions

Definition corrected by Brendan McKay, Jan 07 2007
Terms a(7) onward from Max Alekseyev, Feb 05 2010

A362905 Array read by antidiagonals: T(n,k) is the number of n element multisets of length k vectors over GF(2) that sum to zero.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 1, 8, 5, 3, 1, 1, 1, 16, 15, 11, 3, 1, 1, 1, 32, 51, 50, 14, 4, 1, 1, 1, 64, 187, 276, 99, 24, 4, 1, 1, 1, 128, 715, 1768, 969, 232, 30, 5, 1, 1, 1, 256, 2795, 12496, 11781, 3504, 429, 45, 5, 1, 1, 1, 512, 11051, 93600, 162877, 73440, 10659, 835, 55, 6, 1
Offset: 0

Views

Author

Andrew Howroyd, May 27 2023

Keywords

Comments

Equivalently, T(n,k) is the number multisets with n elements drawn from {0..2^k-1} such that the bitwise-xor of all the elements gives zero.
T(n,k) is the number of equivalence classes of n X k binary matrices with an even number of 1's in each column under permutation of rows.
T(n,k) is the number of equivalence classes of n X k binary matrices under permutation of rows and complementation of columns.

Examples

			Array begins:
=========================================
n/k| 0 1  2   3     4      5        6 ...
---+-------------------------------------
0  | 1 1  1   1     1      1        1 ...
1  | 1 1  1   1     1      1        1 ...
2  | 1 2  4   8    16     32       64 ...
3  | 1 2  5  15    51    187      715 ...
4  | 1 3 11  50   276   1768    12496 ...
5  | 1 3 14  99   969  11781   162877 ...
6  | 1 4 24 232  3504  73440  1878976 ...
7  | 1 4 30 429 10659 394383 18730855 ...
  ...
		

Crossrefs

Columns k=0..4 are A000012, A004526(n+2), A053307, A362906, A363350.
Rows n=2..3 are A000079, A007581.
Main diagonal is A363351.

Programs

  • Mathematica
    A362905[n_,k_]:=(Binomial[2^k+n-1,n]+If[EvenQ[n],(2^k-1)Binomial[2^(k-1)+n/2-1,n/2],0])/2^k;Table[A362905[n-k,k],{n,0,15},{k,n,0,-1}] (* Paolo Xausa, Nov 19 2023 *)
  • PARI
    T(n,k)={(binomial(2^k+n-1, n) + if(n%2==0, (2^k-1)*binomial(2^(k-1)+n/2-1,n/2)))/2^k}

Formula

T(n,k) = binomial(2^k+n-1, n)/2^k for odd n;
T(n,k) = (binomial(2^k+n-1, n) + (2^k-1)*binomial(2^(k-1)+n/2-1, n/2))/2^k for even n.
G.f. of column k: (1/(1-x)^(2^k) + (2^k-1)/(1-x^2)^(2^(k-1)))/2^k.

A056204 Number of n X 5 binary matrices under row and column permutations and column complementations.

Original entry on oeis.org

1, 1, 6, 16, 81, 299, 1358, 5567, 23350, 91998, 351058, 1269907, 4394634, 14495236, 45779246, 138567568, 403282017, 1130773069, 3062535192, 8028046724, 20411824364, 50429813556, 121280243676, 284360432241, 650972702410
Offset: 0

Views

Author

Vladeta Jovovic, Aug 05 2000

Keywords

References

  • M. A. Harrison, On the number of classes of binary matrices, IEEE Trans. Computers, 22 (1973), 1048-1051.

Crossrefs

Formula

G.f.: 1/3840*(1/(1 - x^1)^32 + 231/(1 - x^2)^16 + 20/(1 - x^1)^16/(1 - x^2)^8 + 520/(1 - x^4)^8 + 60/(1 - x^1)^8/(1 - x^2)^12 + 80/(1 - x^1)^8/(1 - x^3)^8 + 720/(1 - x^2)^4/(1 - x^6)^4 + 160/(1 - x^1)^4/(1 - x^2)^2/(1 - x^3)^4/(1 - x^6)^2 + 320/(1 - x^4)^2/(1 - x^12)^2 + 240/(1 - x^1)^4/(1 - x^2)^2/(1 - x^4)^6 + 480/(1 - x^8)^4 + 240/(1 - x^2)^4/(1 - x^4)^6 + 384/(1 - x^1)^2/(1 - x^5)^6 + 384/(1 - x^2)^1/(1 - x^10)^3).

A056205 Number of n X 6 binary matrices under row and column permutations and column complementations.

Original entry on oeis.org

1, 1, 7, 23, 153, 849, 6128, 43534, 319119, 2255466, 15307395, 98349144, 597543497, 3430839916, 18653684881, 96273409815, 473010823993, 2218614773950, 9961651259869, 42927432229913, 177963663264430
Offset: 0

Views

Author

Vladeta Jovovic, Aug 05 2000

Keywords

References

  • M. A. Harrison, On the number of classes of binary matrices, IEEE Trans.Computers, 22 (1973), 1048-1051.

Crossrefs

Formula

G.f.: 1/46080*(1/(1 - x^1)^64 + 1053/(1 - x^2)^32 + 30/(1 - x^1)^32/(1 - x^2)^16 + 4920/(1 - x^4)^16 + 180/(1 - x^1)^16/(1 - x^2)^24 + 120/(1 - x^1)^8/(1 - x^2)^28 + 160/(1 - x^1)^16/(1 - x^3)^16 + 5280/(1 - x^2)^8/(1 - x^6)^8 + 960/(1 - x^1)^8/(1 - x^2)^4/(1 - x^3)^8/(1 - x^6)^4 + 3840/(1 - x^4)^4/(1 - x^12)^4 + 640/(1 - x^1)^4/(1 - x^3)^20 + 1920/(1 - x^2)^2/(1 - x^6)^10 + 720/(1 - x^1)^8/(1 - x^2)^4/(1 - x^4)^12 + 5760/(1 - x^8)^8 + 2160/(1 - x^2)^8/(1 - x^4)^12 + 1440/(1 - x^1)^4/(1 - x^2)^6/(1 - x^4)^12 + 2304/(1 - x^1)^4/(1 - x^5)^12 + 6912/(1 - x^2)^2/(1 - x^10)^6 + 3840/(1 - x^1)^2/(1 - x^2)^1/(1 - x^3)^2/(1 - x^6)^9 + 3840/(1 - x^4)^1/(1 - x^12)^5).
Showing 1-7 of 7 results.