A242012 a(n) is the number of positive integers k <= n for which gpf(k^2 + 1) = gpf(n^2 + 1), where gpf is the greatest prime divisor.
1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 4, 1, 1, 3, 1, 3, 1, 1, 2, 5, 1, 1, 2, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 4, 1, 3, 3, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1
Offset: 1
Keywords
Examples
a(3) = 2 because the greatest prime divisor of 3^2 + 1 is 5 and n=3 is the 2nd positive value of n at which gpf(n^2 + 1) = 5; the 1st is n=2: gpf(2^2 + 1) = 5. a(313) = 7 because the greatest prime divisor of 313^2 + 1 is 101, and n=313 is the 7th positive value of n at which this occurs: 10^2 + 1 = 101; 91^2 + 1 = 2 * 41 * 101; 111^2 + 1 = 2 * 61 * 101; 192^2 + 1 = 5 * 73 * 101; 212^2 + 1 = 5 * 89 * 101; 293^2 + 1 = 2 * 5^2 * 17 * 101; 313^2 + 1 = 2 * 5 * 97 * 101.
Links
- Michel Lagneau, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory):nn:=200:T:=array(1..nn):k:=0: for m from 1 to nn do: x:=factorset(m^2+1):n1:=nops(x):p:=x[n1]:k:=k+1:T[k]:=p: od: for n from 1 to 150 do: q:=T[n]:ii:=0: for i from 1 to n do: if T[i]=q then ii:=ii+1: else fi: od: printf(`%d, `,ii): od: # Simpler version: N:= 1000: # to get a(n) for n <= N T:= Array(1..N): for n from 1 to N do T[n]:= max(numtheory:-factorset(n^2+1)); A[n]:= numboccur(T,T[n]); od: seq(A[n],n=1..N); # Robert Israel, Aug 12 2014
-
PARI
a(n) = my(gn = vecmax(factor(n^2+1)[,1])); sum(k=1, n, vecmax(factor(k^2+1)[,1]) == gn); \\ Michel Marcus, Sep 10 2017
Extensions
Edited by Jon E. Schoenfield, Sep 10 2017
Comments