cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242023 Decimal expansion of Sum_{n >= 1} (-1)^(n + 1)*24/(n*(n + 1)*(n + 2)*(n + 3)).

Original entry on oeis.org

8, 4, 7, 3, 7, 6, 4, 4, 4, 5, 8, 4, 9, 1, 6, 5, 6, 8, 0, 1, 8, 0, 9, 4, 5, 5, 3, 3, 2, 8, 3, 1, 6, 8, 4, 5, 0, 8, 2, 6, 7, 0, 9, 6, 6, 1, 9, 4, 8, 3, 4, 7, 9, 8, 5, 2, 8, 4, 2, 6, 9, 7, 0, 4, 5, 5, 2, 6, 2, 5, 6, 9, 6, 9
Offset: 0

Views

Author

Richard R. Forberg, Aug 11 2014

Keywords

Comments

Sum of terms of the inverse of Binomial(n,4) or A000332, for n>=4, with alternating signs.
In general the sums of Binomial coefficients of this form appear to have the form m*log(2) - r, where m is an integer and r is rational as below:
For Binomial(n,1): m = 1, r = 0. See A002162.
For Binomial(n,2): m = 4, r = 2. See A000217.
For Binomial(n,3): m = 12 r = 15/2. See A000292.
For Binomial(n,4): m = 32, r = 64/3. See A000332.
For Binomial(n,5): m = 80, r = 655/12. See A000389.
For Binomial(n,6): m = 192, r = 661/5. See A000579.
For Binomial(n,7): m = 448, r = 9289/30. See A000580.
For Binomial(n,8): m = 1024, r = 74432/105. See A000581.
This is generalized as follows:
m grows as A001787(k) = k*2^(k-1) for Binomial(n,k).
r * (k-1)! produces the integer sequence: a(k) = 0, 2, 15, 128, 1310, 15864, 222936, 3572736, where a(k+1)/a(k) approaches 2*k for large k.
Results are precise to 100 digits or more using Mathematica.

Examples

			0.8473764445849165680180945...
		

Crossrefs

Programs

  • Magma
    [32*Log(2) - 64/3]; // G. C. Greubel, Nov 23 2017
  • Mathematica
    Sum[N[(-1)^(n + 1)*24/(n*(n + 1)*(n + 2)*(n + 3)), 150], {n, 1, Infinity}]
    RealDigits[32*Log[2] - 64/3, 10, 50][[1]] (* G. C. Greubel, Nov 23 2017 *)
  • PARI
    32*log(2) - 64/3 \\ Michel Marcus, Aug 13 2014
    
  • PARI
    sumalt(n=1, (-1)^(n + 1)*24/(n*(n + 1)*(n + 2)*(n + 3))) \\ Michel Marcus, Aug 14 2014
    

Formula

Equals 32*log(2) - 64/3.
Equals 32*(A259284-1). - R. J. Mathar, Jun 30 2021