cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242026 Number of non-palindromic n-tuples of 4 distinct elements.

Original entry on oeis.org

0, 12, 48, 240, 960, 4032, 16128, 65280, 261120, 1047552, 4190208, 16773120, 67092480, 268419072, 1073676288, 4294901760, 17179607040, 68719214592, 274876858368, 1099510579200, 4398042316800, 17592181850112, 70368727400448, 281474959933440, 1125899839733760
Offset: 1

Views

Author

Mikk Heidemaa, Aug 12 2014

Keywords

Comments

Non-palindromic vs palindromic (DNA) sequences (e.g., {a,c,a,c} is a non-palindromic sequence but {a,c,c,a} is palindromic). Useful in bioinformatics.

Examples

			For n=2 the a(2)=12 solutions (non-palindromic 2-tuples over 4 distinct elements {a,c,g,t}) are: {a,c}, {a,g}, {a,t}, {c,a}, {c,g}, {c,f}, {g,a},{g,c}, {g,t}, {t,a}, {t,c}, {t,g}.
		

Crossrefs

Programs

  • Mathematica
    Table[2^(n-1) * (2^(n+1) + (-1)^n - 3), {n, 66}]
    LinearRecurrence[{4,4,-16},{0,12,48},30] (* Harvey P. Dale, May 24 2023 *)
  • PARI
    a(n) = ((-1)^n - 3)*2^(n-1) + 4^n; \\ Michel Marcus, Aug 12 2014
    
  • PARI
    concat(0, Vec(12*x^2 / ((2*x-1)*(2*x+1)*(4*x-1)) + O(x^100))) \\ Colin Barker, Aug 12 2014

Formula

a(n) = 2^(n-1) * (2^(n+1) + (-1)^n - 3).
a(n) = 4^n - 4^ceiling(n/2) = A000302(n) - A056450(n).
From Colin Barker, Aug 12 2014: (Start)
a(n) = 4*a(n-1) + 4*a(n-2) - 16*a(n-3).
G.f.: 12*x^2 / ((2*x-1)*(2*x+1)*(4*x-1)). (End)

Extensions

Typos in formula fixed by Colin Barker, Aug 12 2014