A242027 Number T(n,k) of endofunctions on [n] with cycles of k distinct lengths; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.
1, 0, 1, 0, 4, 0, 24, 3, 0, 206, 50, 0, 2300, 825, 0, 31742, 14794, 120, 0, 522466, 294987, 6090, 0, 9996478, 6547946, 232792, 0, 218088504, 160994565, 8337420, 0, 5344652492, 4355845868, 299350440, 151200, 0, 145386399554, 128831993037, 11074483860, 18794160
Offset: 0
Examples
T(3,2) = 3: (1,3,2), (3,2,1), (2,1,3). Triangle T(n,k) begins: 00 : 1; 01 : 0, 1; 02 : 0, 4; 03 : 0, 24, 3; 04 : 0, 206, 50; 05 : 0, 2300, 825; 06 : 0, 31742, 14794, 120; 07 : 0, 522466, 294987, 6090; 08 : 0, 9996478, 6547946, 232792; 09 : 0, 218088504, 160994565, 8337420; 10 : 0, 5344652492, 4355845868, 299350440, 151200;
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
with(combinat): b:= proc(n, i, k) option remember; `if`(n=0, `if`(k=0, 1, 0), `if`(i<1 or k<1, 0, add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!* b(n-i*j, i-1, k-`if`(j=0, 0, 1)), j=0..n/i))) end: T:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j$2, k), j=0..n): seq(seq(T(n, k), k=0..floor((sqrt(1+8*n)-1)/2)), n=0..14);
-
Mathematica
multinomial[n_, k_] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n == 0, If[k==0, 1, 0], If[i<1 || k<1, 0, Sum[(i-1)!^j*multinomial[n, Join[ {n-i*j}, Array[i&, j]]]/j!*b[n-i*j, i-1, k-If[j==0, 0, 1]], {j, 0, n/i}]] ]; T[0, 0] = 1; T[n_, k_] := Sum[Binomial[n-1, j-1]*n^(n-j)*b[j, j, k], {j, 0, n}]; Table[T[n, k], {n, 0, 14}, {k, 0, Floor[(Sqrt[1+8n]-1)/2]}] // Flatten (* Jean-François Alcover, Feb 18 2017, translated from Maple *)