A242060 Lpf_3(A242058(n)-3), where lpf_3(n) = lpf(n/3^t) (cf. A020639) such that 3^t (t>=0) is the maximal power of 3 which divides n.
1, 5, 1, 11, 5, 17, 7, 1, 29, 5, 13, 41, 5, 7, 17, 5, 19, 59, 5, 23, 71, 5, 7, 1, 5, 29, 7, 5, 11, 101, 5, 107, 37, 5, 7, 11, 5, 43, 5, 137, 5, 7, 149, 5, 7, 5, 13, 19, 5, 59, 179, 5, 7, 191, 5, 197, 5, 11, 5, 7, 13, 5, 227, 7, 5, 79, 239, 1, 5, 13, 83, 5, 7
Offset: 1
Keywords
Programs
-
Mathematica
lpf[n_]:=lpf[n]=First[First[FactorInteger[n]]]; lpf3[n_]:=lpf3[n]=If[#==1,1,lpf[#]]&[n/3^IntegerExponent[n,3]] Map[lpf3[#-3]&,Select[Range[4,300,2],lpf3[#-1]>lpf3[#-3]&]](* Peter J. C. Moses, Aug 13 2014 *)
Extensions
More terms from Peter J. C. Moses, Aug 13 2014
Comments