A242095 Number A(n,k) of inequivalent n X n matrices with entries from [k], where equivalence means permutations of rows or columns or the symbol set; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 5, 1, 0, 1, 1, 8, 18, 1, 0, 1, 1, 9, 139, 173, 1, 0, 1, 1, 9, 408, 15412, 2812, 1, 0, 1, 1, 9, 649, 332034, 10805764, 126446, 1, 0, 1, 1, 9, 749, 2283123, 3327329224, 50459685390, 16821330, 1, 0
Offset: 0
Examples
A(2,2) = 5: [1 1] [2 1] [2 2] [2 1] [2 1] [1 1], [1 1], [1 1], [2 1], [1 2]. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, ... 0, 1, 1, 1, 1, 1, ... 0, 1, 5, 8, 9, 9, ... 0, 1, 18, 139, 408, 649, ... 0, 1, 173, 15412, 332034, 2283123, ... 0, 1, 2812, 10805764, 3327329224, 173636442196, ...
Links
Crossrefs
Programs
-
Maple
with(numtheory): b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(i<1, {}, {seq(map(p-> p+j*x^i, b(n-i*j, i-1) )[], j=0..n/i)})) end: A:= proc(n, k) option remember; add(add(add(mul(mul(add(d* coeff(u, x, d), d=divisors(ilcm(i, j)))^(igcd(i, j)* coeff(s, x, i)*coeff(t, x, j)), j=1..degree(t)), i=1..degree(s))/mul(i^coeff(u, x, i)*coeff(u, x, i)!, i=1..degree(u))/mul(i^coeff(t, x, i)*coeff(t, x, i)!, i=1..degree(t))/mul(i^coeff(s, x, i)*coeff(s, x, i)!, i=1..degree(s)), u=b(k$2)), t=b(n$2)), s=b(n$2)) end: seq(seq(A(n, d-n), n=0..d), d=0..10);
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, {0}, If[i<1, {}, Flatten@Table[Map[ Function[p, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]]; A[n_, k_] := A[n, k] = Sum[Sum[Sum[Product[Product[With[{g = GCD[i, j]* Coefficient[s, x, i]*Coefficient[t, x, j]}, If[g == 0, 1, Sum[d* Coefficient[u, x, d], {d, Divisors[LCM[i, j]]}]^g]], {j, Exponent[t, x]} ], {i, Exponent[s, x]}]/Product[i^Coefficient[u, x, i]*Coefficient[u, x, i]!, {i, Exponent[u, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, Exponent[t, x]}]/Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, Exponent[s, x]}], {u, b[k, k]}], {t, b[n, n]}], {s, b[n, n]}]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Feb 21 2016, after Alois P. Heinz, updated Jan 01 2021 *)
Comments