A242114 Triangle read by rows: T(n,k) = number of pairs (x,y) in {1..n}X{1..n} with gcd(x,y) = k.
1, 3, 1, 7, 1, 1, 11, 3, 1, 1, 19, 3, 1, 1, 1, 23, 7, 3, 1, 1, 1, 35, 7, 3, 1, 1, 1, 1, 43, 11, 3, 3, 1, 1, 1, 1, 55, 11, 7, 3, 1, 1, 1, 1, 1, 63, 19, 7, 3, 3, 1, 1, 1, 1, 1, 83, 19, 7, 3, 3, 1, 1, 1, 1, 1, 1, 91, 23, 11, 7, 3, 3, 1, 1, 1, 1, 1, 1, 115, 23
Offset: 1
Examples
T(4,1) = #{(1,1), (1,2), (1,3), (1,4), (2,1), (2,3), (3,1), (3,2), (3,4), (4,1), (4,3)} = 11; T(4,2) = #{(2,2), (2,4), (4,2)} = 3; T(4,3) = #{(3,3)} = 1; T(4,4) = #{(4,4)} = 1. The triangle begins: row sums . 1: 1 1 . 2: 3 1 4 . 3: 7 1 1 9 . 4: 11 3 1 1 16 . 5: 19 3 1 1 1 25 . 6: 23 7 3 1 1 1 36 . 7: 35 7 3 1 1 1 1 49 . 8: 43 11 3 3 1 1 1 1 64 . 9: 55 11 7 3 1 1 1 1 1 81 . 10: 63 19 7 3 3 1 1 1 1 1 100 . 11: 83 19 7 3 3 1 1 1 1 1 1 121 . 12: 91 23 11 7 3 3 1 1 1 1 1 1 144 . 13: 115 23 11 7 3 3 1 1 1 1 1 1 1 169 . 14: 127 35 11 7 3 3 3 1 1 1 1 1 1 1 196 . 15: 143 35 19 7 7 3 3 1 1 1 1 1 1 1 1 225 . 16: 159 43 19 11 7 3 3 3 1 1 1 1 1 1 1 1 256 . 17: 191 43 19 11 7 3 3 3 1 1 1 1 1 1 1 1 1 289 . 18: 203 55 23 11 7 7 3 3 3 1 1 1 1 1 1 1 1 1 324 .
Links
- Reinhard Zumkeller, Rows n = 1..125 of table, flattened
Programs
-
Haskell
a242114 n k = a242114_tabl !! (n-1) !! (k-1) a242114_row n = a242114_tabl !! (n-1) a242114_tabl = map (map a018805) a010766_tabl
-
Mathematica
T[n_, k_] := 2 Total[EulerPhi[Range[Quotient[n, k]]]] - 1; Table[T[n, k], {n, 1, 18}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 20 2021 *)
Comments