A242116 Cullen semiprimes: Semiprimes of the form k*2^k + 1.
9, 25, 65, 161, 2049, 4609, 22529, 1048577, 44040193, 283467841537, 1202590842881, 256065421246102339102334047485953, 4259306016766850789028922770063361, 356615920533143509709616588588493085605889, 57729314674570665269045550892293179276409335447553
Offset: 1
Keywords
Examples
a(4) = 161 = (5*2^5+1) is 5th Cullen number and 161 = 7 * 23 is semiprime. a(5) = 2049 = (8*2^8+1) is 8th Cullen number and 2049 = 3 * 683 is semiprime.
Links
- Tyler Busby, Table of n, a(n) for n = 1..35 (terms 1..16 from K. D. Bajpai, terms 17..34 from Amiram Eldar)
Programs
-
Magma
IsSemiprime:=func; [s: n in [1..200] | IsSemiprime(s) where s is n*2^n+1]; // // Vincenzo Librandi, May 07 2014
-
Maple
with(numtheory): A242116:= proc(); if bigomega(x*2^x+1) = 2 then RETURN (x*2^x+1); fi; end: seq(A242116 (), x=1..200);
-
Mathematica
cullen[n_] := n * 2^n + 1; Select[cullen[Range[35]], PrimeOmega[#] == 2 &] (* Amiram Eldar, Nov 27 2019 *)
-
PARI
select(n->bigomega(n)==2, vector(90,n,n<
Charles R Greathouse IV, May 06 2014
Comments