cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A242139 Decimal equivalents of A242138.

Original entry on oeis.org

5, 9, 10, 17, 18, 21, 27, 33, 34, 36, 42, 45, 51, 54, 65, 66, 68, 73, 85, 99, 102, 119, 129, 130, 132, 136, 146, 153, 165, 170, 187, 195, 198, 204, 219, 221, 231, 238, 257, 258, 260, 264, 273, 292, 297, 325, 330, 341, 363, 365, 387, 390, 396, 429, 438, 455
Offset: 1

Views

Author

Felix Fröhlich, May 05 2014

Keywords

Programs

  • PARI
    isvper(v) = {nv = #v; if (isprime(nv), return (0)); fordiv(nv, d, if ((d > 1) && (d < nv), dv = vector(d, i, v[i]); pdv = []; for (k=1, nv/d, pdv = concat(pdv, dv)); if (pdv == v, return (1)););); return (0);}
    isok(n) = {vn = binary(n); if (vecmin(vn) == vecmax(vn), return (0)); if (isvper(vn), return (1)); nbmax = #vn; for (k=1, nbmax, vn = concat(0, vn); if (isvper(vn), return (1));); return (0);} \\ Michel Marcus, Aug 25 2014

Extensions

Missing terms 99, 102, 119 added and more terms from Michel Marcus, Aug 25 2014

A353339 Number of integers b with n > b > 1 such that the base-b representation of n is periodic.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 2, 2, 2, 4, 1, 2, 2, 2, 3, 2, 3, 4, 1, 3, 4, 2, 1, 4, 1, 4, 3, 4, 1, 4, 3, 3, 3, 4, 2, 5, 2, 2, 2, 5, 1, 5, 2, 3, 4, 2, 1, 5, 1, 5, 4, 4, 1, 5, 2, 4, 3, 2, 1, 7, 1, 3, 5, 3, 5, 5, 1, 5, 2, 5, 1, 5, 3, 3, 3, 3, 2, 5, 1, 6, 2, 4, 1, 7, 4, 3, 2
Offset: 1

Views

Author

Felix Fröhlich, Apr 14 2022

Keywords

Examples

			For n = 10: The base-2, base-3, base-4 and base-9 representations of 10 are 1010, 0101, 22 and 11, respectively, and these are the only representations that are periodic, so a(10) = 4.
		

Crossrefs

Programs

  • PARI
    is(n, b) = for (w=1, oo, my (d=digits(n, b^w)); if (#d<=1, return (0), #Set(d)==1, return (1))) \\ after Rémy Sigrist in A321513
    a(n) = my(i=0); for(b=2, n-1, if(is(n, b), i++)); i

A352886 Number of B-periodic numbers of bit pseudo-length n.

Original entry on oeis.org

1, 0, 4, 0, 7, 3, 16, 0, 37, 0, 64, 18, 127, 0, 283, 0, 517, 66, 1024, 0, 2167, 15, 4096, 255, 8197, 0, 16906, 0, 32767, 1026, 65536, 78, 133087, 0, 262144, 4098, 524407, 0, 1056730, 0, 2097157, 16635, 4194304, 0, 8421247, 63, 16777711, 65538, 33554437, 0
Offset: 4

Views

Author

Felix Fröhlich, Apr 07 2022

Keywords

Comments

For the definition of "B-periodic numbers" and "bit pseudo-length", see Dobeš, Kureš, 2010, p. 294. The first few terms are given in the table on p. 295.
The sequence counts periodic binary numbers of length n where the least-significant bit is 0 (see Dobeš, Kureš, 2010, p. 294).

Examples

			For n = 6: The B-periodic numbers of bit pseudo-length 6 are 101010, 100100, 010010 and 110110, so a(6) = 4.
		

Crossrefs

Programs

  • PARI
    c(n) = sumdiv(n, d, moebius(d)*2^(n/d))
    a(n) = (2^n - c(n) - 2)/2

Formula

a(n) = (2^n - c(n) - 2)/2, where c(n) = Sum_{d|n} A008683(d)*2^(n/d).
Showing 1-3 of 3 results.