cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242172 a(n) = 2^n*binomial((n + 1 + (n mod 2))/2, 1/2).

Original entry on oeis.org

1, 3, 6, 15, 30, 70, 140, 315, 630, 1386, 2772, 6006, 12012, 25740, 51480, 109395, 218790, 461890, 923780, 1939938, 3879876, 8112468, 16224936, 33801950, 67603900, 140408100, 280816200, 581690700, 1163381400, 2404321560, 4808643120, 9917826435, 19835652870
Offset: 0

Views

Author

Peter Luschny, May 06 2014

Keywords

Crossrefs

Programs

  • Maple
    a := n -> 2^n*binomial((n+1+(n mod 2))/2, 1/2); seq(a(n), n=0..29);
  • Mathematica
    a[n_] := 2^n*Binomial[(n + 1 + Mod[n, 2])/2, 1/2]; Array[a, 33, 0] (* Amiram Eldar, Mar 04 2023 *)

Formula

a(2*n) = A002457(n).
a(2*n+1) = A033876(n).
a(2*n+2)/2 = a(2*n+1).
Conjecture: (n+1)*a(n) -2*a(n-1) +4*(-n-1)*a(n-2)=0. - R. J. Mathar, May 11 2014
a(n) = A100071(n+2)/2. - Michel Marcus, Sep 14 2015
Sum_{n>=0} 1/a(n) = 2*Pi/sqrt(3) - 2. - Amiram Eldar, Mar 04 2023
a(n) = (n+2)*binomial(n+1,ceiling(n/2))/2. - Wesley Ivan Hurt, Nov 23 2023