A242192 Number of ways to write n^4 as sum of a square and a cube, both > 0.
0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Examples
a(6) = #{28^2 + 8^3} = 1; a(72) = #{4941^2 + 135^3, 1728^2 + 288^3} = 2; a(225) = #{49375^2 + 500^3, 33750^2 + 1125^3, 10125^2 + 1350^3} = 3; a(1800) = #{3160000^2 + 8000^3, 2835000^2 + 13500^3, 2160000^2 + 18000^3, 648000^2 + 21600^3} = 4; a(24200) = #{582914112^2 + 147136^3, 564344000^2 + 290400^3, 479160000^2 + 484000^3, 219615000^2 + 665500^3, 42092875^2 + 698775^3} = 5.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a242192 n = sum $ map (a010052 . (n ^ 4 -)) $ takeWhile (< n ^ 4) $ map (^ 3) [1..] -- Reinhard Zumkeller, May 07 2014
Comments