cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242209 Semiprimes sp = p^2 + q^2 + r^2 where p, q and r are consecutive primes.

Original entry on oeis.org

38, 339, 579, 1731, 5739, 8499, 32259, 133851, 145779, 163851, 207579, 222531, 235779, 260187, 308019, 323619, 366819, 469731, 550491, 644979, 684699, 743091, 926427, 1003539, 1242939, 1743531, 1808259, 1852107, 1909059, 2075091, 2585571, 4226979, 5358291
Offset: 1

Views

Author

K. D. Bajpai, May 07 2014

Keywords

Comments

Subsequence of A133529.
All the terms in the sequence, except a(1), are divisible by 3.

Examples

			a(1) = 38 = 2^2 + 3^2 + 5^2 = 2*19 is semiprime.
a(2) = 339 = 7^2 + 11^2 + 13^2 = 3*113 is semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory): A242209:= proc()local k ; k:=(ithprime(x)^2+ithprime(x+1)^2+ithprime(x+2)^2); if bigomega(k)=2 then RETURN (k); fi;end: seq(A242209 (),x=1..500);
  • Mathematica
    Select[Total[#^2]&/@Partition[Prime[Range[300]],3,1],PrimeOmega[#]==2&] (* Harvey P. Dale, Nov 05 2015 *)
  • PARI
    for(k=1, 500, sp=prime(k)^2+prime(k+1)^2+prime(k+2)^2; if(bigomega(sp)==2, print1(sp, ", "))) \\ Colin Barker, May 07 2014