A242225 Write the coefficient of x^n/n! in the expansion of (x/(exp(x)-1))^(1/2) as f(n)/g(n); sequence gives g(n).
1, 4, 48, 64, 1280, 3072, 86016, 49152, 2949120, 1310720, 11534336, 4194304, 1526726656, 2348810240, 12079595520, 3221225472, 73014444032, 51539607552, 137095356088320, 5772436045824, 3809807790243840, 725677674332160, 2023101395107840, 3166593487994880
Offset: 0
Examples
For n=1, B_1=-1/2 and B_1^(1/2)=-1/4 so a(1)=4. For n=6, B_6=1/6 and B_6^(1/2)=79/86016 so a(6)=86016.
Links
- David Broadhurst, Relations between A241885/A242225, A222411/A222412, and A350194/A350154.
- Jitender Singh, On an arithmetic convolution, arXiv:1402.0065 [math.NT], 2014.
Programs
-
Maple
g := proc(f, n) option remember; local g0, m; g0 := sqrt(f(0)); if n=0 then g0 else if n=1 then 0 else add(binomial(n, m)*g(f, m)*g(f, n-m), m=1..n-1) fi; (f(n)-%)/(2*g0) fi end: a := n -> denom(g(bernoulli, n)); seq(a(n), n=0..23);
-
Mathematica
a := 1 g[0] := Sqrt[f[0]] f[k_] := BernoulliB[k] g[1] := f[1]/(2 g[0]^1); g[k_] := (f[k] - Sum[Binomial[k, m] g[m] g[k - m], {m, 1, k - 1}])/(2 g[0]) Table[Denominator[Factor[g[k]]], {k, 0, 15}] // TableForm (* Alternative: *) Table[Denominator@NorlundB[n, 1/2, 0], {n, 0, 23}] (* Peter Luschny, Feb 18 2024 *)
Formula
Theorem: A241885(n)/A242225(n) = n!*A222411(n)/(A222412(n)*(-1)^n/(1-2*n)) = n!*A350194(n)/(A350154(n)*(2*n+1)). - David Broadhurst, Apr 23 2022 (see Link).
For any arithmetic function f and a positive integer k>1, define the k-th root of f to be the arithmetic function g such that g*g*...*g(k times)=f and is determined by the following recursive formula:
g(0)= f(0)^{1/m};
g(1)= f(1)/(mg(0)^(m-1));
g(k)= 1/(m g(0)^{m-1})*(f(k)-sum_{k_1+...+k_m=k,k_i=2.
This formula is applicable for any rational root of an arithmetic function with respect to the Cauchy type product.
Extensions
Simpler definition from N. J. A. Sloane, Apr 24 2022 at the suggestion of David Broadhurst.
Comments