cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A241885 Write the coefficient of x^n/n! in the expansion of (x/(exp(x)-1))^(1/2) as f(n)/g(n); sequence gives f(n).

Original entry on oeis.org

1, -1, 1, 1, -3, -19, 79, 275, -2339, -11813, 14217, 95265, -4634445, -193814931, 131301607, 1315505395, -3890947599, -136146236611, 46949081169401, 124889801445461, -10635113572583999, -158812278992229461, 56918172351554857, 8484151253958927197
Offset: 0

Views

Author

Jitender Singh, May 01 2014

Keywords

Comments

For g(n) see A242225(n).
The old definition was "Numerator of (B_n)^(1/2) in the Cauchy type product (sometimes known as binomial transform) where B_n is the n-th Bernoulli number".
The Nørlund polynomials N(a, n, x) with parameter a = 1/2 evaluated at x = 0 give the rational values. - Peter Luschny, Feb 18 2024

Examples

			For n=1, B_1=-1/2 and B_1^(1/2)=-1/4 so a(1)=-1.
For n=6, B_6=1/6 and B_6^(1/2)=79/86016 so a(6)=79.
1/1, -1/4, 1/48, 1/64, -3/1280, -19/3072, 79/86016, 275/49152, -2339/2949120, -11813/1310720, 14217/11534336 = A241885 / A242225.
		

Crossrefs

Cf. A242225 (denominators), A126156, A242233.

Programs

  • Maple
    g := proc(f, n) option remember; local g0, m; g0 := sqrt(f(0));
    if n=0 then g0 else if n=1 then 0 else add(binomial(n, m)*g(f,m)*g(f,n-m), m=1..n-1) fi; (f(n)-%)/(2*g0) fi end:
    a := n -> numer(g(bernoulli, n));
    seq(a(n), n = 0..23); # Peter Luschny, May 07 2014
  • Mathematica
    a := 1
    g[0] := Sqrt[f[0]]
    f[k_] := BernoulliB[k]
    g[1] := f[1]/(2 g[0]^1);
    g[k_] := (f[k] - Sum[Binomial[k, m] g[m] g[k - m], {m, 1, k - 1}])/(2 g[0])
    Table[Factor[g[k]], {k, 0, 15}] // TableForm
    (* Alternative: *)
    Table[Numerator@NorlundB[n, 1/2, 0], {n, 0, 23}]  (* Peter Luschny, Feb 18 2024 *)
  • PARI
    a(n)=numerator(sum(k=0,n,binomial(-1/2,k)*binomial(n+1/2,n-k)*stirling(n+k,k,2)/binomial(n+k,k))) \\ Tani Akinari, Oct 08 2024

Formula

Theorem: a(n)/A242225(n) = n!*A222411(n)/(A222412(n)*(-1)^n/(1-2*n)) = n!*A350194(n)/(A350154(n)*(2*n+1)). - David Broadhurst, Apr 23 2022 (see Link).
For any arithmetic function f and a positive integer k > 1, define the k-th root of f to be the arithmetic function g such that g*g*...*g(k times)=f and is determined by the following recursive formula:
g(0) = f(0)^(1/m);
g(1) = f(1)/(m*g(0)^(m-1));
g(k) = 1/(m*g(0)^(m-1))*(f(k) - Sum_{k_1+...+k_m=k,k_i= 2.
This formula is applicable for any rational root of an arithmetic function with respect to the Cauchy type product.
E.g.f: sqrt(x/(exp(x)-1)); take numerators. - Peter Luschny, May 08 2014
a(n) = numerator(Sum_{k=0..n} binomial(-1/2,k)*binomial(n+1/2,n-k)*Stirling2(n+k,k)/binomial(n+k,k)). - Tani Akinari, Oct 08 2024

Extensions

Simpler definition from N. J. A. Sloane, Apr 24 2022 at the suggestion of David Broadhurst

A222411 Numerators in Taylor series expansion of (x/(exp(x) - 1))^(3/2)*exp(x/2).

Original entry on oeis.org

1, -1, -1, 5, 7, -19, -869, 715, 2339, -200821, -12863, 2117, 7106149, -64604977, -131301607, 7629931291, 174053933, -19449462373, -46949081169401, 355455588729389, 10635113572583999, -6511303438681407901, -349640201588122693, 9112944418860287
Offset: 0

Views

Author

N. J. A. Sloane, Feb 28 2013

Keywords

Examples

			The first few fractions are 1, -1/4, -1/32, 5/384, 7/10240, -19/40960, -869/61931520, 715/49545216, ... = A222411/A222412. - _Petros Hadjicostas_, May 14 2020
		

Crossrefs

Cf. A222412 (denominators).

Programs

  • Maple
    gf:= (x/(exp(x)-1))^(3/2)*exp(x/2):
    a:= n-> numer(coeff(series(gf, x, n+3), x, n)):
    seq(a(n), n=0..25);  # Alois P. Heinz, Mar 02 2013
  • Mathematica
    Series[(x/(Exp[x]-1))^(3/2)*Exp[x/2], {x, 0, 25}] // CoefficientList[#, x]& // Numerator (* Jean-François Alcover, Mar 18 2014 *)

Formula

Theorem: A241885(n)/A242225(n) = n!*A222411(n)/(A222412(n)*(-1)^n/(1-2*n)) = n!*A350194(n)/(A350154(n)*(2*n+1)). - David Broadhurst, Apr 23 2022 (see Link).

A222412 Denominators in Taylor series expansion of (x/(exp(x) - 1))^(3/2)*exp(x/2).

Original entry on oeis.org

1, 4, 32, 384, 10240, 40960, 61931520, 49545216, 7927234560, 475634073600, 1993133260800, 177167400960, 48753634065776640, 195014536263106560, 39002907252621312000, 842462796656620339200, 2204424056667635712000, 79359266040034885632000
Offset: 0

Views

Author

N. J. A. Sloane, Feb 28 2013

Keywords

Examples

			The first few fractions are 1, -1/4, -1/32, 5/384, 7/10240, -19/40960, -869/61931520, 715/49545216, ... = A222411/A222412. - _Petros Hadjicostas_, May 14 2020
		

Crossrefs

Programs

  • Maple
    gf:= (x/(exp(x)-1))^(3/2)*exp(x/2):
    a:= n-> denom(coeff(series(gf, x, n+3), x, n)):
    seq(a(n), n=0..25);  # Alois P. Heinz, Mar 02 2013
  • Mathematica
    Series[(x/(Exp[x]-1))^(3/2)*Exp[x/2], {x, 0, 25}] // CoefficientList[#, x]& // Denominator (* Jean-François Alcover, Mar 18 2014 *)

Formula

Theorem: A241885(n)/A242225(n) = n!*A222411(n)/(A222412(n)*(-1)^n/(1-2*n)) = n!*A350194(n)/(A350154(n)*(2*n+1)). - David Broadhurst, Apr 23 2022 (see Link).

A350154 a(n) = denominator(k^n * [x^(2*n+1)] sqrt(k)*arccos(exp(-x^2/(2*k)))) for n >= 0 and fixed k > 0.

Original entry on oeis.org

1, 12, 480, 2688, 92160, 4055040, 805109760, 148635648, 2021444812800, 9037047398400, 41855798476800, 85571854663680, 1218840851644416000, 131634811977596928000, 30539276378802487296000, 26116346696355230515200, 72745993870031978496000, 8332722934203662991360000
Offset: 0

Views

Author

Robert B Fowler, Dec 16 2021

Keywords

Comments

Denominators of a power series characterizing how powers of the cosine function converge to the Gaussian function.
As the cosine function is raised to increasing powers k, it converges to the Gaussian normal function. Let x be the standard deviation argument of the Gaussian function, and define a suitably scaled cosine function.
G(x) = exp(-x^2/2), Gaussian function.
C(x,k) = (cos(x/sqrt(k)))^k, k-th power of cosine function
C(x,k) - G(x) = -x^4/(12k) + x^6/(24k) - x^6/(45x^2) + ...
The usefulness of this approximation lies within the "principal half-period" of C(x,k), defined as h_k = {x : abs(x) < sqrt(k)*Pi/2}. Within h_k, k can be any real number and C(x,k) is a good approximation to G(x) even for small k, although convergence to G(x) is only reciprocal in k. Outside h_k, negative cosine values occur and the approximation deteriorates.
If we define x(k) such that G(x) = C(x(k),k) then
x = lim_{k->infinity} x(k).
The value of x(k) can be expressed as a polynomial in integer powers of x and k and coefficients A350194(n)/a(n), and characterizes how closely cosine powers approximate and converge to the Gaussian function.

Examples

			x(k) = x - (1/12)*(x^3/k) + (1/480)*(x^5/k^2) + (1/2688)*(x^7/k^3) - (1/92160)*(x^9/k^4) - (19/4055040)*(x^11/k^5) + (79/805109760)*(x^13/k^6) ...
		

Crossrefs

Programs

  • Maple
    gf := sqrt(k)*arccos(exp(-x^2/(2*k))): assume(k > 0): assume(x > 0):
    ser := series(gf, x, 80): seq(denom(k^n*coeff(ser, x, 2*n+1)), n=0..17); # Peter Luschny, Dec 19 2021

Formula

The definitions of G(x) and C(x,k) lead directly to the equation
x(k) = sqrt(k)*arccos(exp(-x^2/(2k))),
which can be expanded into the power series
x(k) = Sum_{n>=0} (x^(2n+1)/k^n) * (A350194(n)/a(n)).
Theorem: A241885(n)/A242225(n) = n!*A222411(n)/(A222412(n)*(-1)^n/(1-2*n)) = n!*A350194(n)/(A350154(n)*(2*n+1)). - David Broadhurst, Apr 23 2022 (see Link).

A350194 Numerators of a power series characterizing how powers of the cosine function converge to the Gaussian function.

Original entry on oeis.org

1, -1, 1, 1, -1, -19, 79, 11, -2339, -11813, 677, 2117, -308963, -64604977, 131301607, 263101079, -5614643, -1768132943, 46949081169401, 9606907803497, -10635113572583999, -158812278992229461, 8131167478793551, 9112944418860287, -40395223967437706149
Offset: 0

Views

Author

Robert B Fowler, Dec 19 2021

Keywords

Comments

See A350154 for the denominators of this sequence of rational coefficients, as well as relevant comments, formulae, and examples.

Crossrefs

Cf. A350154.

Formula

Theorem: A241885(n)/A242225(n) = n!*A222411(n)/(A222412(n)*(-1)^n/(1-2*n)) = n!*A350194(n)/(A350154(n)*(2*n+1)). - David Broadhurst, Apr 23 2022 (see Link).

A370414 T(n, k) = numerator([x^n] N(1/2, n, x)) where N(a, n, x) is the n-th Nørlund polynomial.

Original entry on oeis.org

1, -1, 1, 1, -1, 1, 1, 1, -3, 1, -3, 1, 1, -1, 1, -19, -3, 5, 5, -5, 1, 79, -19, -9, 5, 5, -3, 1, 275, 79, -133, -21, 35, 7, -7, 1, -2339, 275, 79, -133, -21, 7, 7, -2, 1, -11813, -2339, 825, 79, -399, -189, 21, 3, -9, 1, 14217, -11813, -2339, 1375, 395, -399, -63, 15, 15, -5, 1
Offset: 0

Views

Author

Peter Luschny, Feb 18 2024

Keywords

Comments

Nørlund polynomials N(a, n, x) are generalizations of the powers 1, x, x^2, ... as well as of the Bernoulli polynomials 1, x - 1/2, x^2 - x + 1/6, ...
Parameter a = 0 gives the first case and a = 1 the second case. Here, we consider the case a = 1/2. You can think of it as a kind of square root of the Bernoulli polynomials. We give the coefficients of these polynomials, this sequence for the numerators, and A370415 for the denominators.
We also give the values of these polynomials at the point x = 1, which are analogous to the Bernoulli numbers; A370416 for the numerators, and A370417 for the denominators.

Examples

			The lists of rational coefficients start:
  [0] [        1]
  [1] [     -1/4,        1]
  [2] [     1/48,     -1/2,         1]
  [3] [     1/64,     1/16,      -3/4,       1]
  [4] [  -3/1280,     1/16,       1/8,      -1,     1]
  [5] [ -19/3072,   -3/256,      5/32,    5/24,  -5/4,    1]
  [6] [ 79/86016,  -19/512,    -9/256,    5/16,  5/16, -3/2,    1]
  [7] [275/49152, 79/12288, -133/1024, -21/256, 35/64, 7/16, -7/4, 1]
		

Crossrefs

Programs

  • Maple
    egf := (t/(exp(t) - 1))^(1/2)*exp(z*t):
    ser := series(egf, t, 16): ct := n -> n!*coeff(ser, t, n):
    seq(seq(numer(coeff(ct(n), z, k)), k = 0..n), n = 0..10);
  • Mathematica
    Table[Numerator@CoefficientList[NorlundB[n, 1/2, x], x] , {n, 0, 10}] // Flatten

Formula

T(n, k) = numerator( n! * [z^k] [t^n] (t / (exp(t) - 1))^(1/2)*exp(z*t) ).
Showing 1-6 of 6 results.