cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A243365 Primes p such that both p^2 + 6 and p^2 - 6 are semiprime.

Original entry on oeis.org

101, 157, 173, 229, 233, 239, 347, 349, 353, 421, 439, 479, 521, 577, 619, 661, 719, 751, 761, 829, 881, 1019, 1061, 1117, 1129, 1153, 1277, 1289, 1321, 1447, 1453, 1489, 1523, 1579, 1721, 1733, 1801, 1811, 1823, 1831, 1861, 1871, 1873, 2027, 2099, 2221, 2239
Offset: 1

Views

Author

K. D. Bajpai, Jun 24 2014

Keywords

Examples

			101 is in the sequence because 101 is prime. 101^2 + 6 = 10207 = 59 * 173 which is semiprime. 101^2 - 6 = 10195 = 5 * 2039 which is semiprime.
157 is in the sequence because 157 is prime. 157^2 + 6 = 24655 = 5 * 4931 which is semiprime. 157^2 - 6 = 24643 = 19 * 1297 which is semiprime.
		

Crossrefs

Cf. A000040 (primes), A001358 (semiprimes).
Cf. A117328 (p+/-4 semiprime), A115395(p+/-6 semiprime), A242244 (p^2+/-2 semiprime).

Programs

  • Maple
    with(numtheory): A243365:= proc()local k; k:=ithprime(n); if bigomega(k^2+6)=2 and bigomega(k^2-6)=2 then RETURN (k); fi; end: seq(A243365 (),n=1..5000);
  • Mathematica
    A243365 = {}; k = Prime[n]; Do[If[PrimeOmega[k^2 + 6] == 2 && PrimeOmega[k^2 - 6] == 2, AppendTo[A243365, k]], {n, 1000}]; A243365
    Select[Prime[Range[400]],PrimeOmega[#^2+{6,-6}]=={2,2}&] (* Harvey P. Dale, Jul 08 2014 *)
  • PARI
    s=[]; forprime(p=2, 3000, if(bigomega(p^2+6)==2 && bigomega(p^2-6)==2, s=concat(s, p))); s \\ Colin Barker, Jun 25 2014
Showing 1-1 of 1 results.