cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242278 Number of non-palindromic n-tuples of 3 distinct elements.

Original entry on oeis.org

0, 6, 18, 72, 216, 702, 2106, 6480, 19440, 58806, 176418, 530712, 1592136, 4780782, 14342346, 43040160, 129120480, 387400806, 1162202418, 3486725352, 10460176056, 31380882462, 94142647386, 282429005040, 847287015120, 2541864234006, 7625592702018, 22876787671992
Offset: 1

Views

Author

Mikk Heidemaa, Aug 16 2014

Keywords

Examples

			For n=3, the a(3)=18 solutions (non-palindromic 3-tuples) are:
{0,0,1}, {0,0,2}, {0,1,1}, {0,1,2}, {0,2,1}, {0,2,2}, {1,0,0}, {1,0,2},
{1,1,0}, {1,1,2}, {1,2,0}, {1,2,2}, {2,0,0}, {2,0,1}, {2,1,0}, {2,1,1},
{2,2,0}, {2,2,1}.
		

Crossrefs

Programs

  • Maple
    A242278:=n->(1/2)* 3^(n/2) * ((sqrt(3)-1) * (-1)^n - sqrt(3)-1) + 3^n: seq(A242278(n), n=1..28); # Wesley Ivan Hurt, Aug 17 2014.
  • Mathematica
    Table[1/2 * 3^(n/2) * ((Sqrt(3)-1) * (-1)^n - Sqrt(3)-1) + 3^n, {n, 28}]
  • PARI
    a(n)=3^n-3^ceil(n/2) \\ Charles R Greathouse IV, Dec 10 2014

Formula

a(n) = 1/2 * 3^(n/2) * ((sqrt(3)-1)*(-1)^n - sqrt(3)-1) + 3^n.
a(n) = 3^n - 3^ceiling(n/2).
a(n) = A000244(n) - A056449(n).
G.f.: (6*x) / (1 - 3*x - 3*x^2 + 9*x^3).
a(n) = 6*A167993(n). [Bruno Berselli, Aug 19 2014]