A242280 a(n) = Sum_{k=0..n} (k! * Stirling2(n,k))^3.
1, 1, 9, 433, 63225, 18954001, 10159366329, 8924902306993, 11969476975085625, 23232038620328946001, 62655369716047066046649, 227268291642918880258797553, 1079475019974966974009683584825, 6565863403062578428919598754170001
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..169
Programs
-
Mathematica
Table[Sum[(k!)^3 * StirlingS2[n,k]^3,{k,0,n}],{n,0,20}]
-
PARI
a(n) = sum(k=0, n, (k!*stirling(n, k, 2))^3); \\ Seiichi Manyama, Apr 06 2025
Formula
a(n) ~ sqrt(Pi/6) * n^(3*n+1/2) / ((1-log(2)) * exp(3*n) * (log(2))^(3*n+1)).
a(n) = (n!)^3 * [(x*y*z)^n] 1 / (1 - (exp(x) - 1) * (exp(y) - 1) * (exp(z) - 1)). - Seiichi Manyama, Apr 06 2025
Comments