A242410 a(1)=1 and for n>1, a(n) is the smallest number greater than a(n-1) such that a(n) is not divisible by a(d) for any divisor d of n (except 1 and n).
1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 29, 31, 33, 34, 37, 38, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 67, 68, 71, 73, 77, 79, 81, 82, 83, 84
Offset: 1
Keywords
Examples
a(4) cannot be 4 because 4 is divisible by a(2) = 2. a(24) cannot be 25 because 25 is divisible by a(4) = 5.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) option remember; local Q,k; Q:= map(procname, numtheory:-divisors(n) minus {1,n}); for k from procname(n-1) + 1 do if andmap(t -> (k mod t > 0), Q) then return k fi od end proc: f(1):= 1: map(f, [$1..100]); # Robert Israel, Jul 05 2017
-
Mathematica
a = {1}; Do[k = a[[n - 1]] + 1; While[AnyTrue[Most@ Rest@ Divisors@ n, Divisible[k, a[[#]] ] &], k++]; AppendTo[a, k], {n, 2, 61}]; a (* Michael De Vlieger, Jul 05 2017 *)
-
PARI
okd(k, vd) = {for (i=1, #vd, if ((k % vd[i]) == 0, return (0));); return (1);} fnext(n, va) = {d = divisors(n); vd = vector(#d-2, i, va[d[i+1]]); k = va[n-1]+1; while (! okd(k, vd), k++); k;} lista(nn) = {va = vector(nn); va[1] = 1; for (n=2, nn, va[n] = fnext(n, va);); va;} \\ Michel Marcus, May 17 2014
Comments