A242411 If n is a prime power, p_i^e, a(n) = 0, otherwise difference (i-j) of the indices of the two largest distinct primes p_i, p_j, i > j in the prime factorization of n: a(n) = A061395(n) - A061395(A051119(n)).
0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 3, 1, 0, 0, 1, 0, 2, 2, 4, 0, 1, 0, 5, 0, 3, 0, 1, 0, 0, 3, 6, 1, 1, 0, 7, 4, 2, 0, 2, 0, 4, 1, 8, 0, 1, 0, 2, 5, 5, 0, 1, 2, 3, 6, 9, 0, 1, 0, 10, 2, 0, 3, 3, 0, 6, 7, 1, 0, 1, 0, 11, 1, 7, 1, 4, 0, 2, 0, 12, 0, 2, 4, 13, 8, 4, 0
Offset: 1
Keywords
Links
Crossrefs
Programs
-
Haskell
a242411 1 = 0 a242411 n = i - j where (i:j:_) = map a049084 $ ps ++ [p] ps@(p:_) = reverse $ a027748_row n -- Reinhard Zumkeller, May 15 2014
-
Python
from sympy import factorint, primefactors, primepi def a061395(n): return 0 if n==1 else primepi(primefactors(n)[-1]) def a053585(n): if n==1: return 1 p = primefactors(n)[-1] return p**factorint(n)[p] def a051119(n): return n/a053585(n) def a(n): return 0 if n==1 or len(primefactors(n))==1 else a061395(n) - a061395(a051119(n)) # Indranil Ghosh, May 19 2017
-
Scheme
(define (A242411 n) (if (= 1 (A001221 n)) 0 (- (A061395 n) (A061395 (A051119 n)))))