cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242418 Numbers n in whose prime factorization, n = 2^e1 * 3^e2 * 5^e3 * ... * p_k^e_k, the exponents (some of them possibly zero) of prime factors from 2 to p_k form a palindrome, so that e1 = e_k, e2 = e_{k-1}, etc.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 14, 16, 22, 26, 30, 32, 34, 36, 38, 46, 58, 62, 64, 74, 82, 86, 90, 94, 100, 106, 110, 118, 122, 128, 134, 142, 146, 158, 166, 178, 194, 196, 202, 206, 210, 214, 216, 218, 226, 238, 254, 256, 262, 270, 274, 278, 298, 300, 302, 314, 326, 334
Offset: 1

Views

Author

Antti Karttunen, May 20 2014

Keywords

Comments

a(1)=1 is included because 1 has an empty factorization (either no exponents, or all of them are zero), which thus is also a palindrome.

Crossrefs

Fixed points of A137502.
Cf. A241912.
A002110 and A079704 are subsequences.

Programs

  • Mathematica
    f[n_] := If[n == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ n]; g[w_List] := Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, w]; Select[Range@ 336, g@ f@ # == g@ Reverse@ f@ # &] (* Michael De Vlieger, Aug 27 2016 *)

Formula

a(1)=1, and for n > 1, a(n) = 2 * A241912(n-1).