A242450 Number T(n,k) of Dyck paths of semilength n having exactly k (possibly overlapping) occurrences of the consecutive steps UUDDUDUUUUDUDDDDUUDD (with U=(1,1), D=(1,-1)); triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-2)/8)), read by rows.
1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16795, 1, 58783, 3, 208002, 10, 742865, 35, 2674314, 126, 9694383, 462, 35355954, 1716, 129638355, 6435, 477614391, 24308, 1, 1767170815, 92372, 3, 6563767715, 352694, 11, 24464914983, 1351996, 41, 91477363496, 5199988
Offset: 0
Examples
Triangle T(n,k) begins: : 0 : 1; : 1 : 1; : 2 : 2; : 3 : 5; : 4 : 14; : 5 : 42; : 6 : 132; : 7 : 429; : 8 : 1430; : 9 : 4862; : 10 : 16795, 1; : 11 : 58783, 3; : 12 : 208002, 10; : 13 : 742865, 35; : 14 : 2674314, 126; : 15 : 9694383, 462; : 16 : 35355954, 1716; : 17 : 129638355, 6435; : 18 : 477614391, 24308, 1; : 19 : 1767170815, 92372, 3; : 20 : 6563767715, 352694, 11; : 21 : 24464914983, 1351996, 41;
Links
- Alois P. Heinz, Rows n = 0..500, flattened
Crossrefs
Programs
-
Maple
b:= proc(x, y, t) option remember; `if`(x=0, 1, expand(`if`(y>=x-1, 0, b(x-1, y+1, [2, 3, 3, 2, 6, 3, 8, 9, 10, 11, 3, 13, 3, 2, 2, 2, 18, 19, 3, 2][t]))+ `if`(t=20, z, 1)*`if`(y=0, 0, b(x-1, y-1, [1, 1, 4, 5, 1, 7, 1, 1, 4, 4, 12, 5, 14, 15, 16, 17, 1, 1, 20, 5][t])))) end: T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)): seq(T(n), n=0..30);
-
Mathematica
b[x_, y_, t_] := b[x, y, t] = If[x == 0, 1, Expand[If[y >= x - 1, 0, b[x - 1, y + 1, {2, 3, 3, 2, 6, 3, 8, 9, 10, 11, 3, 13, 3, 2, 2, 2, 18, 19, 3, 2}[[t]]]] + If[t == 20, z, 1]*If[y == 0, 0, b[x - 1, y - 1, {1, 1, 4, 5, 1, 7, 1, 1, 4, 4, 12, 5, 14, 15, 16, 17, 1, 1, 20, 5}[[t]]]]]]; T[n_] := CoefficientList[b[2n, 0, 1], z]; T /@ Range[0, 30] // Flatten (* Jean-François Alcover, Mar 27 2021, after Alois P. Heinz *)
Comments