A242489 Smallest even k such that lpf(k-1) = prime(n), while lpf(k-3) > prime(n), where lpf=least prime factor (A020639).
10, 26, 50, 254, 170, 392, 362, 944, 842, 1892, 1370, 2420, 1850, 2210, 3764, 6314, 3722, 4892, 5042, 7082, 8612, 9380, 7922, 12320, 11414, 10610, 11450, 13844, 18872, 16130, 17162, 20414, 19322, 26672, 24614, 25592, 29504, 37910, 29930, 44930, 36020, 36482
Offset: 2
Keywords
Examples
Let n=2, prime(2)=3. Then lpf(10-1)=3, but lpf(10-3)=7>3. Since k=10 is the smallest such k, then a(2)=10.
Links
- Peter J. C. Moses, Table of n, a(n) for n = 2..2501
Programs
-
Mathematica
lpf[n_]:=lpf[n]=First[Select[Divisors[n],PrimeQ[#]&]]; Table[test=Prime[n];NestWhile[#+2&,test^2+1,!((lpf[#-1]==test)&&(lpf[#-3]>test))&],{n,2,60}] (* Peter J. C. Moses, May 21 2014 *)
-
PARI
a(n) = {k = 6; p = prime(n); while ((factor(k-1)[1, 1] != p) || (factor(k-3)[1, 1] <= p), k+= 2); k;} \\ Michel Marcus, May 16 2014
Formula
a(n) >= prime(n)^2+1. - Vladimir Shevelev, May 21 2014
Extensions
More terms from Michel Marcus, May 16 2014
Comments