cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242489 Smallest even k such that lpf(k-1) = prime(n), while lpf(k-3) > prime(n), where lpf=least prime factor (A020639).

Original entry on oeis.org

10, 26, 50, 254, 170, 392, 362, 944, 842, 1892, 1370, 2420, 1850, 2210, 3764, 6314, 3722, 4892, 5042, 7082, 8612, 9380, 7922, 12320, 11414, 10610, 11450, 13844, 18872, 16130, 17162, 20414, 19322, 26672, 24614, 25592, 29504, 37910, 29930, 44930, 36020, 36482
Offset: 2

Views

Author

Vladimir Shevelev, May 16 2014

Keywords

Comments

This sequence is connected with a sufficient condition for the infinitude of twin primes.
Almost all numbers of the form a(n)-3 are primes. For composite numbers of such a form, see A242716.
Primes p for which a(p) = p^2+1 form sequence A062326 for p >= 3. - Vladimir Shevelev, May 21 2014

Examples

			Let n=2, prime(2)=3. Then lpf(10-1)=3, but lpf(10-3)=7>3.
Since k=10 is the smallest such k, then a(2)=10.
		

Crossrefs

Programs

  • Mathematica
    lpf[n_]:=lpf[n]=First[Select[Divisors[n],PrimeQ[#]&]];
    Table[test=Prime[n];NestWhile[#+2&,test^2+1,!((lpf[#-1]==test)&&(lpf[#-3]>test))&],{n,2,60}] (* Peter J. C. Moses, May 21 2014 *)
  • PARI
    a(n) = {k = 6; p = prime(n); while ((factor(k-1)[1, 1] != p) || (factor(k-3)[1, 1] <= p), k+= 2); k;} \\ Michel Marcus, May 16 2014

Formula

a(n) >= prime(n)^2+1. - Vladimir Shevelev, May 21 2014

Extensions

More terms from Michel Marcus, May 16 2014