cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242521 Number of cyclic arrangements (up to direction) of {1,2,...,n} such that the difference between any two neighbors is b^k for some b>1 and k>1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 6, 9, 42, 231, 1052, 3818, 10086, 27892, 90076, 310301, 993680, 4663558, 22038882, 162588454, 1246422151, 8655752023, 58951670318, 347675502245
Offset: 1

Views

Author

Stanislav Sykora, May 27 2014

Keywords

Comments

a(n)=NPC(n;S;P) is the count of all neighbor-property cycles for a specific set S={1,2,...,n} of n elements and a specific pair-property P. For more details, see the link and A242519.

Examples

			The two cycles of length n=13 (the smallest n such that a(n)>0) are: C_1={1,5,9,13,4,8,12,3,7,11,2,6,10}, C_2={1,9,5,13,4,8,12,3,7,11,2,6,10}.
		

Crossrefs

Programs

  • Mathematica
    A242521[n_] := Count[Map[lpf, Map[j1f, Permutations[Range[2, n]]]], 0]/2;
    j1f[x_] := Join[{1}, x, {1}];
    lpf[x_] := Length[Select[Abs[Differences[x]], ! MemberQ[t, #] &]];
    t = Flatten[Table[b^k, {k, 2, 5}, {b, 2, 5}]];
    Table[A242521[n], {n, 1, 10}]
    (* OR, a less simple, but more efficient implementation. *)
    A242521[n_, perm_, remain_] := Module[{opt, lr, i, new},
       If[remain == {},
         If[MemberQ[t, Abs[First[perm] - Last[perm]]], ct++];
         Return[ct],
         opt = remain; lr = Length[remain];
         For[i = 1, i <= lr, i++,
          new = First[opt]; opt = Rest[opt];
          If[! MemberQ[t, Abs[Last[perm] - new]], Continue[]];
          A242521[n, Join[perm, {new}],
           Complement[Range[2, n], perm, {new}]];
          ];
         Return[ct];
         ];
       ];
    t = Flatten[Table[b^k, {k, 2, 5}, {b, 2, 5}]];
    Table[ct = 0; A242521[n, {1}, Range[2, n]]/2, {n, 1, 18}] (* Robert Price, Oct 24 2018 *)

Extensions

a(27)-a(30) from Max Alekseyev, Jul 12 2014
a(31)-a(32) from Fausto A. C. Cariboni, May 17 2017, May 24 2017