cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242525 Number of cyclic arrangements of S={1,2,...,n} such that the difference between any two neighbors is at most 3.

Original entry on oeis.org

1, 1, 1, 3, 6, 10, 17, 31, 57, 104, 188, 340, 616, 1117, 2025, 3670, 6651, 12054, 21847, 39596, 71764, 130065, 235730, 427238, 774328, 1403395, 2543518, 4609881, 8354965, 15142569, 27444447, 49740415, 90149708, 163387657, 296124381, 536696900
Offset: 1

Views

Author

Stanislav Sykora, May 27 2014

Keywords

Comments

a(n) = NPC(n;S;P) is the count of all neighbor-property cycles for a specific set S of n elements and a specific pair-property P. For more details, see the link and A242519.

Examples

			For n=4, The three cycles are: C_1={1,2,3,4}, C_2={1,2,4,3}, C_3={1,3,2,4}.
The first and the last of the 104 such cycles of length n=10 are: C_1={1,2,3,5,6,8,9,10,7,4}, C_104={1,3,6,9,10,8,7,5,2,4}.
		

Crossrefs

Programs

  • Mathematica
    A242525[n_] := Count[Map[lpf, Map[j1f, Permutations[Range[2, n]]]], 0]/2;
    j1f[x_] := Join[{1}, x, {1}];
    lpf[x_] := Length[Select[Abs[Differences[x]], # > 3 &]];
    Join[{1, 1}, Table[A242525[n], {n, 3, 10}]]
    (* OR, a less simple, but more efficient implementation. *)
    A242525[n_, perm_, remain_] := Module[{opt, lr, i, new},
       If[remain == {},
         If[Abs[First[perm] - Last[perm]] <= 3, ct++];
         Return[ct],
         opt = remain; lr = Length[remain];
         For[i = 1, i <= lr, i++,
          new = First[opt]; opt = Rest[opt];
          If[Abs[Last[perm] - new] > 3, Continue[]];
          A242525[n, Join[perm, {new}],
           Complement[Range[2, n], perm, {new}]];
          ];
         Return[ct];
         ];
       ];
    Join[{1, 1},
    Table[ct = 0; A242525[n, {1}, Range[2, n]]/2, {n, 3, 12}] ](* Robert Price, Oct 24 2018 *)
  • PARI
    lista(nn) = {my(v=[1, 1, 1, 3, 6, 10, 17]); for(n=8, nn, v = concat(v, v[n-1] + v[n-2] + v[n-4] + v[n-5])); v}; \\ Yifan Xie, Mar 20 2025

Formula

Empirical: a(n) = a(n-1)+a(n-2)+a(n-4)+a(n-5) for n>7. - Andrew Howroyd, Apr 08 2016
Empirical G.f.: x^2 + ((1-x)^2*(1+x)^2)/(1-x-x^2-x^4-x^5). - Andrew Howroyd, Apr 08 2016
Empirical first differences of A185265. - Sean A. Irvine, Jun 26 2022
See link for proofs of the above formulas. - Yifan Xie, Mar 19 2025

Extensions

a(28)-a(35) from Andrew Howroyd, Apr 08 2016