A242525 Number of cyclic arrangements of S={1,2,...,n} such that the difference between any two neighbors is at most 3.
1, 1, 1, 3, 6, 10, 17, 31, 57, 104, 188, 340, 616, 1117, 2025, 3670, 6651, 12054, 21847, 39596, 71764, 130065, 235730, 427238, 774328, 1403395, 2543518, 4609881, 8354965, 15142569, 27444447, 49740415, 90149708, 163387657, 296124381, 536696900
Offset: 1
Keywords
Examples
For n=4, The three cycles are: C_1={1,2,3,4}, C_2={1,2,4,3}, C_3={1,3,2,4}. The first and the last of the 104 such cycles of length n=10 are: C_1={1,2,3,5,6,8,9,10,7,4}, C_104={1,3,6,9,10,8,7,5,2,4}.
Links
- Yifan Xie, Table of n, a(n) for n = 1..3000 (First 100 terms from Andrew Howroyd)
- Stanislav Sykora, On Neighbor-Property Cycles, Stan's Library, Volume V, 2014.
- Yifan Xie, Proof of the formulas
Crossrefs
Programs
-
Mathematica
A242525[n_] := Count[Map[lpf, Map[j1f, Permutations[Range[2, n]]]], 0]/2; j1f[x_] := Join[{1}, x, {1}]; lpf[x_] := Length[Select[Abs[Differences[x]], # > 3 &]]; Join[{1, 1}, Table[A242525[n], {n, 3, 10}]] (* OR, a less simple, but more efficient implementation. *) A242525[n_, perm_, remain_] := Module[{opt, lr, i, new}, If[remain == {}, If[Abs[First[perm] - Last[perm]] <= 3, ct++]; Return[ct], opt = remain; lr = Length[remain]; For[i = 1, i <= lr, i++, new = First[opt]; opt = Rest[opt]; If[Abs[Last[perm] - new] > 3, Continue[]]; A242525[n, Join[perm, {new}], Complement[Range[2, n], perm, {new}]]; ]; Return[ct]; ]; ]; Join[{1, 1}, Table[ct = 0; A242525[n, {1}, Range[2, n]]/2, {n, 3, 12}] ](* Robert Price, Oct 24 2018 *)
-
PARI
lista(nn) = {my(v=[1, 1, 1, 3, 6, 10, 17]); for(n=8, nn, v = concat(v, v[n-1] + v[n-2] + v[n-4] + v[n-5])); v}; \\ Yifan Xie, Mar 20 2025
Formula
Empirical: a(n) = a(n-1)+a(n-2)+a(n-4)+a(n-5) for n>7. - Andrew Howroyd, Apr 08 2016
Empirical G.f.: x^2 + ((1-x)^2*(1+x)^2)/(1-x-x^2-x^4-x^5). - Andrew Howroyd, Apr 08 2016
Empirical first differences of A185265. - Sean A. Irvine, Jun 26 2022
See link for proofs of the above formulas. - Yifan Xie, Mar 19 2025
Extensions
a(28)-a(35) from Andrew Howroyd, Apr 08 2016
Comments