A242529 Number of cyclic arrangements (up to direction) of numbers 1,2,...,n such that any two neighbors are coprime.
1, 1, 1, 1, 6, 2, 36, 36, 360, 288, 11016, 3888, 238464, 200448, 3176496, 4257792, 402573312, 139511808, 18240768000, 11813990400, 440506183680, 532754620416, 96429560832000, 32681097216000, 5244692024217600, 6107246661427200, 490508471914905600, 468867166554931200, 134183696369843404800
Offset: 1
Examples
There are 6 such cycles of length n=5: C_1={1,2,3,4,5}, C_2={1,2,3,5,4}, C_3={1,2,5,3,4}, C_4={1,2,5,4,3}, C_5={1,3,2,5,4}, and C_6={1,4,3,2,5}. For length n=6, the count drops to just 2: C_1={1,2,3,4,5,6}, C_2={1,4,3,2,5,6}.
Links
- S. Sykora, On Neighbor-Property Cycles, Stan's Library, Volume V, 2014.
- Wikipedia, Coprime integers
Crossrefs
Programs
-
Mathematica
A242529[n_] := Count[Map[lpf, Map[j1f, Permutations[Range[2, n]]]], 0]/2; j1f[x_] := Join[{1}, x, {1}]; lpf[x_] := Length[Select[cpf[x], # != 1 &]]; cpf[x_] := Module[{i}, Table[GCD[x[[i]], x[[i + 1]]], {i, Length[x] - 1}]]; Join[{1, 1}, Table[A242529[n], {n, 3, 10}]] (* OR, a less simple, but more efficient implementation. *) A242529[n_, perm_, remain_] := Module[{opt, lr, i, new}, If[remain == {}, If[GCD[First[perm], Last[perm]] == 1, ct++]; Return[ct], opt = remain; lr = Length[remain]; For[i = 1, i <= lr, i++, new = First[opt]; opt = Rest[opt]; If[GCD[Last[perm], new] != 1, Continue[]]; A242529[n, Join[perm, {new}], Complement[Range[2, n], perm, {new}]]; ]; Return[ct]; ]; ]; Join[{1, 1},Table[ct = 0; A242529[n, {1}, Range[2, n]]/2, {n, 3, 12}] ](* Robert Price, Oct 25 2018 *)
Formula
For n>2, a(n) = A086595(n)/2.
Extensions
a(1) corrected, a(19)-a(29) added by Max Alekseyev, Jul 04 2014
Comments