cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242529 Number of cyclic arrangements (up to direction) of numbers 1,2,...,n such that any two neighbors are coprime.

Original entry on oeis.org

1, 1, 1, 1, 6, 2, 36, 36, 360, 288, 11016, 3888, 238464, 200448, 3176496, 4257792, 402573312, 139511808, 18240768000, 11813990400, 440506183680, 532754620416, 96429560832000, 32681097216000, 5244692024217600, 6107246661427200, 490508471914905600, 468867166554931200, 134183696369843404800
Offset: 1

Views

Author

Stanislav Sykora, May 30 2014

Keywords

Comments

a(n)=NPC(n;S;P) is the count of all neighbor-property cycles for a specific set S={1,2,...,n} of n elements and a specific pair-property P of "being coprime". For more details, see the link and A242519.

Examples

			There are 6 such cycles of length n=5: C_1={1,2,3,4,5}, C_2={1,2,3,5,4},
C_3={1,2,5,3,4}, C_4={1,2,5,4,3}, C_5={1,3,2,5,4}, and C_6={1,4,3,2,5}.
For length n=6, the count drops to just 2:
C_1={1,2,3,4,5,6}, C_2={1,4,3,2,5,6}.
		

Crossrefs

Programs

  • Mathematica
    A242529[n_] := Count[Map[lpf, Map[j1f, Permutations[Range[2, n]]]], 0]/2;
    j1f[x_] := Join[{1}, x, {1}];
    lpf[x_] := Length[Select[cpf[x], # != 1 &]];
    cpf[x_] := Module[{i},
       Table[GCD[x[[i]], x[[i + 1]]], {i, Length[x] - 1}]];
    Join[{1, 1}, Table[A242529[n], {n, 3, 10}]]
    (* OR, a less simple, but more efficient implementation. *)
    A242529[n_, perm_, remain_] := Module[{opt, lr, i, new},
       If[remain == {},
         If[GCD[First[perm], Last[perm]] == 1, ct++];
         Return[ct],
         opt = remain; lr = Length[remain];
         For[i = 1, i <= lr, i++,
          new = First[opt]; opt = Rest[opt];
          If[GCD[Last[perm], new] != 1, Continue[]];
          A242529[n, Join[perm, {new}],
           Complement[Range[2, n], perm, {new}]];
          ];
         Return[ct];
         ];
       ];
    Join[{1, 1},Table[ct = 0; A242529[n, {1}, Range[2, n]]/2, {n, 3, 12}] ](* Robert Price, Oct 25 2018 *)

Formula

For n>2, a(n) = A086595(n)/2.

Extensions

a(1) corrected, a(19)-a(29) added by Max Alekseyev, Jul 04 2014