cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A242510 Number of n-length words on {1,2,3} such that the maximal blocks (runs) of 1's have odd length, the maximal blocks of 2's have even length and the maximal blocks of 3's have odd length.

Original entry on oeis.org

1, 2, 3, 8, 15, 32, 67, 138, 289, 600, 1249, 2600, 5409, 11258, 23427, 48752, 101455, 211128, 439363, 914322, 1902721, 3959600, 8240001, 17147600, 35684481, 74260082, 154536643, 321593688, 669242575, 1392706512, 2898248707
Offset: 0

Views

Author

Geoffrey Critzer, May 16 2014

Keywords

Examples

			a(3)=8 because we have: 111, 122, 131, 221, 223, 313, 322, 333.
		

Crossrefs

Programs

  • Mathematica
    n=3;nn=30;CoefficientList[Series[1/(1-Sum[v[i]/(1+v[i]),{i,1,n}])/.Join[Table[v[i]->z/(1-z^2),{i,1,n,2}],Table[v[i]->z^2/(1-z^2),{i,2,n,2}]],{z,0,nn}],z]
    (* Changing n=3 at the beginning of this code to n = k, (for k a positive integer) will return the number of n-length words on {1,2,...,k} where the maximal run lengths of odd integers are odd and the maximal run lengths of even integers are even. *)

Formula

G.f.: (1 + x - x^2)/(1 - x - 2*x^2 - x^3 +x^4).
a(n) = a(n-1) +2*a(n-2) +a(n-3) -a(n-4). - Fung Lam, May 18 2014

A242537 Number of n-length words on {1,2,3,4,5} such that the maximal runs of identical odd integers are of odd length and the maximal runs of identical even integers are of even length.

Original entry on oeis.org

1, 3, 8, 27, 82, 255, 794, 2463, 7654, 23775, 73850, 229407, 712606, 2213583, 6876098, 21359343, 66348934, 206100927, 640215146, 1988712255, 6177573934, 19189513071, 59608742162, 185163746895, 575177598550, 1786684895967, 5550012597050, 17240107585311, 53553267556606, 166353513271311, 516747019188962
Offset: 0

Views

Author

Geoffrey Critzer, May 17 2014

Keywords

Examples

			a(3)=27 because we have: 111, 122, 131, 135, 144, 151, 153, 221, 223, 225, 313, 315, 322, 333, 344, 351, 353, 441, 443, 445, 513, 515, 522, 531, 535, 544, 555.
		

Crossrefs

Programs

  • Mathematica
    n=5;nn=30;CoefficientList[Series[1/(1-Sum[v[i]/(1+v[i]),{i,1,n}])/.Join[Table[v[i]->z/(1-z^2),{i,1,n,2}],Table[v[i]->z^2/(1-z^2),{i,2,n,2}]],{z,0,nn}],z]

Formula

G.f.: (1 + x - x^2)/(1 - 2*x - 3*x^2 - 2*x^3 + 2*x^4).
a(n) = 2*a(n-1) +3*a(n-2) +2*a(n-3) -2*a(n-4). - Fung Lam, May 18 2014
Showing 1-2 of 2 results.