A242557 Least number k such that n^128+k^128 is prime.
1, 113, 106, 259, 304, 85, 212, 135, 158, 47, 62, 985, 84, 47, 518, 485, 178, 169, 106, 27, 88, 139, 632, 47, 44, 643, 20, 209, 606, 1529, 32, 31, 1094, 139, 754, 647, 38, 37, 262, 69, 94, 631, 90, 25, 38, 195, 10, 277, 232, 187, 554, 189, 10, 47, 216, 131, 1132, 173, 390
Offset: 1
Keywords
Programs
-
Mathematica
lnk[n_]:=Module[{c=n^128,k},k=If[EvenQ[c],1,2];While[!PrimeQ[c+ k^128],k = k+2];k]; Join[{1},Array[lnk,60,2]] (* Harvey P. Dale, Mar 17 2015 *)
-
PARI
a(n)=for(k=1,10^4,if(ispseudoprime(n^128+k^128),return(k))); n=1;while(n<100,print(a(n));n+=1)
-
Python
import sympy from sympy import isprime def a(n): for k in range(10**4): if isprime(n**128+k**128): return k n = 1 while n < 100: print(a(n)) n += 1
Comments