cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A243411 Least prime p such that p*10^n-1, p*10^n-3, p*10^n-7 and p*10^n-9 are all prime.

Original entry on oeis.org

2, 2, 10193, 24851, 20549, 719, 22133, 230471, 46679, 432449, 114689, 227603, 305297, 61463, 1866467, 866309, 1189403, 362081, 2615783, 493433, 966353, 4154363, 6562931, 9096203, 3701627, 3128813, 20983727, 303593, 24437537, 1068491
Offset: 1

Views

Author

Derek Orr, Jun 04 2014

Keywords

Crossrefs

Programs

  • Mathematica
    lpp[n_]:=Module[{p=2,c=10^n},While[!AllTrue[p*c-{1,3,7,9}, PrimeQ], p= NextPrime[ p]];p]; Array[lpp,30] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jun 12 2016 *)
  • PARI
    a(n)=for(k=1,10^8,if(ispseudoprime(prime(k)*10^n-1) && ispseudoprime(prime(k)*10^n-3) && ispseudoprime(prime(k)*10^n-7) && ispseudoprime(prime(k)*10^n-9), return(prime(k))))
    n=1;while(n<100,print1(a(n),", ");n++)
  • Python
    import sympy
    from sympy import isprime
    from sympy import prime
    def a(n):
      for k in range(1,10**8):
        if isprime(prime(k)*10**n-1) and isprime(prime(k)*10**n-3) and isprime(prime(k)*10**n-7) and isprime(prime(k)*10**n-9):
          return prime(k)
    n = 1
    while n < 100:
      print(a(n),end=', ')
      n+=1
    
Showing 1-1 of 1 results.