A242604 a(n) = (n - 1)*(n^3 + 1) = n^4 - n^3 + n - 1, for n >= 1.
0, 9, 56, 195, 504, 1085, 2064, 3591, 5840, 9009, 13320, 19019, 26376, 35685, 47264, 61455, 78624, 99161, 123480, 152019, 185240, 223629, 267696, 317975, 375024, 439425, 511784, 592731, 682920, 783029, 893760, 1015839, 1150016, 1297065
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[(n - 1)*(n^3 + 1) : n in [1..50]]; // Wesley Ivan Hurt, Jun 20 2014
-
Maple
A242604:=n->(n-1)*(n^3+1); seq(A242604(n), n=1..50); # Wesley Ivan Hurt, Jun 20 2014
-
Mathematica
Table[n^4-n^3+n-1,{n,40}] (* Harvey P. Dale, Jun 20 2019 *)
Formula
a(n) = (n - 1)*(n^3 + 1) = n^4 - n^3 + n - 1, n >= 1.
O.g.f.: x^2*(9 + 11*x + 5*x^2 - x^3)/(1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Wesley Ivan Hurt, Jul 23 2025
Comments