cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242604 a(n) = (n - 1)*(n^3 + 1) = n^4 - n^3 + n - 1, for n >= 1.

Original entry on oeis.org

0, 9, 56, 195, 504, 1085, 2064, 3591, 5840, 9009, 13320, 19019, 26376, 35685, 47264, 61455, 78624, 99161, 123480, 152019, 185240, 223629, 267696, 317975, 375024, 439425, 511784, 592731, 682920, 783029, 893760, 1015839, 1150016, 1297065
Offset: 1

Views

Author

Wolfdieter Lang, Jun 20 2014

Keywords

Comments

1/a(n), for n >= 2, is in base n represented by 0.repeat(0,0,0,1,1,1). This is instance p = 3 of the general formula for 0.repeat(0^(q),1^(q)) (meaning here q zeros followed by q 1's) in base b >= 2 which is 1/a(q,b) with a(q,b) = (b - 1)*(b^p + 1), for p >= 1.

Crossrefs

Cf. A005563 (case q=1), A062158 (case q=2).

Programs

Formula

a(n) = (n - 1)*(n^3 + 1) = n^4 - n^3 + n - 1, n >= 1.
O.g.f.: x^2*(9 + 11*x + 5*x^2 - x^3)/(1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Wesley Ivan Hurt, Jul 23 2025