A242614 Triangle read by rows: row n contains numbers with sum of digits = n, and not greater than the n-th repunit (cf. A007953 and A002275).
0, 1, 2, 11, 3, 12, 21, 30, 102, 111, 4, 13, 22, 31, 40, 103, 112, 121, 130, 202, 211, 220, 301, 310, 400, 1003, 1012, 1021, 1030, 1102, 1111, 5, 14, 23, 32, 41, 50, 104, 113, 122, 131, 140, 203, 212, 221, 230, 302, 311, 320, 401, 410, 500, 1004, 1013, 1022
Offset: 0
Examples
The triangle begins: . 0: 0 . 1: 1 . 2: 2,11 . 3: 3,12,21,30,102,111 . 4: 4,13,22,31,40,103,112,121,130,202, . . . ,1021,1030,1102,1111 . 5: 5,14,23,32,41,50,104,113,122,131, . . . ,11021,11030,11102,11111 .
Links
- Reinhard Zumkeller, Rows n = 0..8 of table, flattened
Crossrefs
Programs
-
Haskell
a242614 n k = a242614_row n !! (k-1) a242614_row n = filter ((== n) . a007953) [n .. a002275 n] a242614_tabf = map a242614_row [0..]
-
Mathematica
Join[{0},Flatten[Table[Select[Range[FromDigits[PadRight[{},n,1]]], Total[ IntegerDigits[ #]] == n&],{n,5}]]] (* Harvey P. Dale, Oct 08 2019 *)
Comments