A242626 Number T(n,k) of compositions of n, where k is the difference between the number of odd parts and the number of even parts, both counted without multiplicity; triangle T(n,k), n>=0, read by rows.
1, 1, 1, 0, 1, 2, 2, 2, 3, 1, 2, 11, 2, 3, 2, 2, 14, 8, 6, 6, 33, 14, 11, 5, 15, 43, 45, 20, 44, 82, 99, 25, 6, 14, 74, 141, 230, 41, 12, 202, 260, 451, 85, 26, 6, 22, 351, 514, 953, 148, 54, 24, 766, 1049, 1798, 355, 104, 18, 104, 1301, 2321, 3503, 751, 194
Offset: 0
Examples
T(8,-1) = 15: [2,2,2,2], [1,1,2,4], [1,1,4,2], [1,2,1,4], [1,2,4,1], [1,4,1,2], [1,4,2,1], [2,1,1,4], [2,1,4,1], [2,4,1,1], [4,1,1,2], [4,1,2,1], [4,2,1,1], [4,4], [8]. Triangle T(n,k) begins: : n\k : -3 -2 -1 0 1 2 3 ... +-----+------------------------------------ : 0 : 1; : 1 : 1; : 2 : 1, 0, 1; : 3 : 2, 2; : 4 : 2, 3, 1, 2; : 5 : 11, 2, 3; : 6 : 2, 2, 14, 8, 6; : 7 : 6, 33, 14, 11; : 8 : 5, 15, 43, 45, 20; : 9 : 44, 82, 99, 25, 6; : 10 : 14, 74, 141, 230, 41, 12; : 11 : 202, 260, 451, 85, 26; : 12 : 6, 22, 351, 514, 953, 148, 54; : 13 : 24, 766, 1049, 1798, 355, 104; : 14 : 18, 104, 1301, 2321, 3503, 751, 194;
Links
- Alois P. Heinz, Rows n = 0..500, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, expand(add(`if`(j=0, 1, x^(2*irem(i, 2)-1))* b(n-i*j, i-1, p+j)/j!, j=0..n/i)))) end: T:= n->(p->seq(coeff(p, x, i), i=ldegree(p)..degree(p)))(b(n$2, 0)): seq(T(n), n=0..20);
-
Mathematica
b[n_, i_, p_] := b[n, i, p] = If[n==0, p!, If[i<1, 0, Expand[Sum[If[j==0, 1, x^(2*Mod[i, 2]-1)]*b[n-i*j, i-1, p+j]/j!, {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, Exponent[p, x, Min], Exponent[p, x]}]][b[n, n, 0]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Jan 17 2017, translated from Maple *)
Comments