A242627 Number of divisors of n that are less than 10.
9, 1, 2, 2, 3, 2, 4, 2, 4, 3, 3, 1, 5, 1, 3, 3, 4, 1, 5, 1, 4, 3, 2, 1, 6, 2, 2, 3, 4, 1, 5, 1, 4, 2, 2, 3, 6, 1, 2, 2, 5, 1, 5, 1, 3, 4, 2, 1, 6, 2, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 6, 1, 2, 4, 4, 2, 4, 1, 3, 2, 4, 1, 7, 1, 2, 3, 3, 2, 4, 1, 5, 3, 2, 1, 6, 2
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (-2,-4,-7,-11,-15,-20,-24,-27,-28,-27,-23,-17,-9,0,9,17,23,27,28,27,24,20,15,11,7,4,2,1).
Crossrefs
Cf. A165412.
Programs
-
Haskell
a242627 n = length $ filter ((== 0) . mod n) [1..9]
-
Maple
a:= n -> numboccur(0,map2(`modp`,n,[$1..9])): map(a,[$0..100]); # Robert Israel, Jul 31 2014
-
Mathematica
a[n_] := If[n == 0, 9, Count[Divisors[n], d_ /; d < 10]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 13 2021 *)
-
PARI
a(n)=1+sum(k=2,9,n%k<1) \\ Zak Seidov, Jul 31 2014
Formula
G.f.: Sum_(j=1..9, 1/(1-x^j)). - Robert Israel, Jul 31 2014
Comments