cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242627 Number of divisors of n that are less than 10.

Original entry on oeis.org

9, 1, 2, 2, 3, 2, 4, 2, 4, 3, 3, 1, 5, 1, 3, 3, 4, 1, 5, 1, 4, 3, 2, 1, 6, 2, 2, 3, 4, 1, 5, 1, 4, 2, 2, 3, 6, 1, 2, 2, 5, 1, 5, 1, 3, 4, 2, 1, 6, 2, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 6, 1, 2, 4, 4, 2, 4, 1, 3, 2, 4, 1, 7, 1, 2, 3, 3, 2, 4, 1, 5, 3, 2, 1, 6, 2
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 16 2014

Keywords

Comments

Number of numbers <= 9, dividing n;
a(n) <= 9; a(2520*n) = 9;
a(n) = (number of repdigit numbers in row n of triangle A242614) = sum(A202022(A242614(n,k)): k=1..A242622(n)), for n > 0.
Periodic with period 2520. Each period there are 576 1's, 720 2's, 464 3's, 360 4's, 206 5's, 122 6's, 58 7's, 13 8's, and 1 9 (average 2.82...). - Charles R Greathouse IV, Sep 27 2015

Crossrefs

Cf. A165412.

Programs

  • Haskell
    a242627 n = length $ filter ((== 0) . mod n) [1..9]
    
  • Maple
    a:= n -> numboccur(0,map2(`modp`,n,[$1..9])):
    map(a,[$0..100]); # Robert Israel, Jul 31 2014
  • Mathematica
    a[n_] := If[n == 0, 9, Count[Divisors[n], d_ /; d < 10]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 13 2021 *)
  • PARI
    a(n)=1+sum(k=2,9,n%k<1) \\ Zak Seidov, Jul 31 2014

Formula

G.f.: Sum_(j=1..9, 1/(1-x^j)). - Robert Israel, Jul 31 2014