A242630 Number of n-length words w over a 7-ary alphabet {a_1,...,a_7} such that w contains never more than j consecutive letters a_j (for 1<=j<=7).
1, 7, 48, 329, 2254, 15443, 105804, 724892, 4966431, 34026362, 233123809, 1597194268, 10942809918, 74972150416, 513654479985, 3519185768909, 24110893526041, 165190252745398, 1131763100053353, 7754015102916294, 53124854674462893, 363972747889200054
Offset: 0
Links
- Geoffrey Critzer and Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4, 13, 33, 61, 106, 157, 220, 277, 331, 364, 382, 369, 340, 289, 233, 170, 117, 70, 39, 17, 6).
Crossrefs
Column k=7 of A242464.
Formula
G.f.: -(x+1) *(x^2+1) *(x^4+1) *(x^6+x^5+x^4+x^3+x^2+x+1) *(x^2+x+1) *(x^2-x+1) *(x^4+x^3+x^2+x+1) / (6*x^21 +17*x^20 +39*x^19 +70*x^18 +117*x^17 +170*x^16 +233*x^15 +289*x^14 +340*x^13 +369*x^12 +382*x^11 +364*x^10 +331*x^9 +277*x^8 +220*x^7 +157*x^6 +106*x^5 +61*x^4 +33*x^3 +13*x^2 +4*x-1).