A242632 Number of n-length words w over a 9-ary alphabet {a_1,...,a_9} such that w contains never more than j consecutive letters a_j (for 1<=j<=9).
1, 9, 80, 711, 6318, 56143, 498896, 4433274, 39394819, 350068993, 3110771999, 27642843622, 245638961566, 2182789161071, 19396631915857, 172361736254288, 1531635402139359, 13610370004776711, 120944038906506659, 1074729088326395697, 9550223588843166996
Offset: 0
Links
- Geoffrey Critzer and Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7, 12, 34, 59, 109, 166, 258, 352, 483, 606, 754, 875, 1007, 1087, 1161, 1172, 1167, 1099, 1023, 895, 775, 628, 503, 371, 273, 179, 118, 66, 38, 15, 8).
Crossrefs
Column k=9 of A242464.
Programs
-
Maple
b:= proc(n, k, c, t) option remember; `if`(n=0, 1, add(`if`(c=t and j=c, 0, b(n-1, k, j, 1+`if`(j=c, t, 0))), j=1..k)) end: a:= n-> b(n, 9, 0$2): seq(a(n), n=0..30);
Formula
G.f.: -(x+1) *(x^4-x^3+x^2-x+1) *(x^4+x^3+x^2+x+1) *(x^2+x+1) *(x^6+x^3+1) *(x^2+1)*(x^4+1) *(x^6+x^5+x^4+x^3+x^2+x+1) *(x^2-x+1) / (8*x^31 +15*x^30 +38*x^29 +66*x^28 +118*x^27 +179*x^26 +273*x^25 +371*x^24 +503*x^23 +628*x^22 +775*x^21 +895*x^20 +1023*x^19 +1099*x^18 +1167*x^17 +1172*x^16 +1161*x^15 +1087*x^14 +1007*x^13 +875*x^12 +754*x^11 +606*x^10 +483*x^9 +352*x^8 +258*x^7 +166*x^6 +109*x^5 +59*x^4 +34*x^3 +12*x^2 +7*x-1).