cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242641 Array read by antidiagonals upwards: B(s,n) ( s>=1, n >= 0) = number of s-line partitions of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 5, 5, 1, 1, 3, 6, 10, 7, 1, 1, 3, 6, 12, 16, 11, 1, 1, 3, 6, 13, 21, 29, 15, 1, 1, 3, 6, 13, 23, 40, 45, 22, 1, 1, 3, 6, 13, 24, 45, 67, 75, 30, 1, 1, 3, 6, 13, 24, 47, 78, 117, 115, 42, 1, 1, 3, 6, 13, 24, 48, 83, 141, 193, 181, 56, 1, 1, 3, 6, 13, 24, 48, 85, 152, 239, 319, 271, 77
Offset: 1

Views

Author

N. J. A. Sloane, May 21 2014

Keywords

Comments

An s-line partition is a planar partition into at most s rows. s-line partitions of n are equinumerous with partitions of n with min(k,s) sorts of part k (cf. the g.f.). - Joerg Arndt, Feb 18 2015
Row s is asymptotic to (Product_{j=1..s-1} j!) * Pi^(s*(s-1)/2) * s^((s^2 + 1)/4) * exp(Pi*sqrt(2*n*s/3)) / (2^((s*(s+2)+5)/4) * 3^((s^2 + 1)/4) * n^((s^2 + 3)/4)). - Vaclav Kotesovec, Oct 28 2015

Examples

			Array begins:
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, ...
1, 1, 3, 5, 10, 16, 29, 45, 75, 115, 181, 271, 413, ...
1, 1, 3, 6, 12, 21, 40, 67, 117, 193, 319, 510, 818, ...
1, 1, 3, 6, 13, 23, 45, 78, 141, 239, 409, 674, 1116, ...
1, 1, 3, 6, 13, 24, 47, 83, 152, 263, 457, 768, 1292, ...
1, 1, 3, 6, 13, 24, 48, 85, 157, 274, 481, 816, 1388, ...
1, 1, 3, 6, 13, 24, 48, 86, 159, 279, 492, 840, 1436, ...
1, 1, 3, 6, 13, 24, 48, 86, 160, 281, 497, 851, 1460, ...
1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 499, 856, 1471, ...
1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 858, 1476, ...
1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 859, 1478, ...
1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 859, 1479, ...
...
		

Crossrefs

Main diagonal = A000219.
See A242642 for the upper triangle of the array.

Programs

  • Maple
    # Maple code for the square array:
    M:=100:
    F:=s->mul((1-q^i)^(-i),i=1..s)*mul((1-q^j)^(-s),j=s+1..M);
    A:=(s,n)->coeff(series(F(s),q,M),q,n);
    for s from 1 to 12 do lprint( [seq(A(s,j),j=0..12)]); od:
    # second Maple program:
    B:= proc(s, n) option remember; `if`(n=0, 1, add(add(min(d, s)
          *d, d=numtheory[divisors](j))*B(s, n-j), j=1..n)/n)
        end:
    seq(seq(B(d-n, n), n=0..d-1), d=1..14);  # Alois P. Heinz, Oct 02 2018
  • Mathematica
    M=100; F[s_] := Product[(1-q^i)^-i, {i, 1, s}]*Product[(1-q^j)^-s, {j, s+1, M}]; A[s_, n_] := Coefficient[Series[F[s], {q, 0, M}], q, n]; Table[A[s-j, j], {s, 1, 12}, {j, 0, s-1}] // Flatten (* Jean-François Alcover, Feb 18 2015, after Maple code *)

Formula

G.f. for row s: Product_{i=1..s} (1-q^i)^(-i) * Product_{j >= s+1} (1-q^j)^(-s). [MacMahon]