A242641 Array read by antidiagonals upwards: B(s,n) ( s>=1, n >= 0) = number of s-line partitions of n.
1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 5, 5, 1, 1, 3, 6, 10, 7, 1, 1, 3, 6, 12, 16, 11, 1, 1, 3, 6, 13, 21, 29, 15, 1, 1, 3, 6, 13, 23, 40, 45, 22, 1, 1, 3, 6, 13, 24, 45, 67, 75, 30, 1, 1, 3, 6, 13, 24, 47, 78, 117, 115, 42, 1, 1, 3, 6, 13, 24, 48, 83, 141, 193, 181, 56, 1, 1, 3, 6, 13, 24, 48, 85, 152, 239, 319, 271, 77
Offset: 1
Examples
Array begins: 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, ... 1, 1, 3, 5, 10, 16, 29, 45, 75, 115, 181, 271, 413, ... 1, 1, 3, 6, 12, 21, 40, 67, 117, 193, 319, 510, 818, ... 1, 1, 3, 6, 13, 23, 45, 78, 141, 239, 409, 674, 1116, ... 1, 1, 3, 6, 13, 24, 47, 83, 152, 263, 457, 768, 1292, ... 1, 1, 3, 6, 13, 24, 48, 85, 157, 274, 481, 816, 1388, ... 1, 1, 3, 6, 13, 24, 48, 86, 159, 279, 492, 840, 1436, ... 1, 1, 3, 6, 13, 24, 48, 86, 160, 281, 497, 851, 1460, ... 1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 499, 856, 1471, ... 1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 858, 1476, ... 1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 859, 1478, ... 1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 859, 1479, ... ...
Links
- Alois P. Heinz, Antidiagonals n = 1..200, flattened
- P. A. MacMahon, The connexion between the sum of the squares of the divisors and the number of partitions of a given number, Messenger Math., 54 (1924), 113-116. Collected Papers, MIT Press, 1978, Vol. I, pp. 1364-1367. See Table II.
Crossrefs
Programs
-
Maple
# Maple code for the square array: M:=100: F:=s->mul((1-q^i)^(-i),i=1..s)*mul((1-q^j)^(-s),j=s+1..M); A:=(s,n)->coeff(series(F(s),q,M),q,n); for s from 1 to 12 do lprint( [seq(A(s,j),j=0..12)]); od: # second Maple program: B:= proc(s, n) option remember; `if`(n=0, 1, add(add(min(d, s) *d, d=numtheory[divisors](j))*B(s, n-j), j=1..n)/n) end: seq(seq(B(d-n, n), n=0..d-1), d=1..14); # Alois P. Heinz, Oct 02 2018
-
Mathematica
M=100; F[s_] := Product[(1-q^i)^-i, {i, 1, s}]*Product[(1-q^j)^-s, {j, s+1, M}]; A[s_, n_] := Coefficient[Series[F[s], {q, 0, M}], q, n]; Table[A[s-j, j], {s, 1, 12}, {j, 0, s-1}] // Flatten (* Jean-François Alcover, Feb 18 2015, after Maple code *)
Formula
G.f. for row s: Product_{i=1..s} (1-q^i)^(-i) * Product_{j >= s+1} (1-q^j)^(-s). [MacMahon]
Comments