A000990 Number of plane partitions of n with at most two rows.
1, 1, 3, 5, 10, 16, 29, 45, 75, 115, 181, 271, 413, 605, 895, 1291, 1866, 2648, 3760, 5260, 7352, 10160, 14008, 19140, 26085, 35277, 47575, 63753, 85175, 113175, 149938, 197686, 259891, 340225, 444135, 577593, 749131, 968281, 1248320, 1604340, 2056809, 2629357, 3353404
Offset: 0
References
- G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004. page 105.
- L. Carlitz, Generating functions and partition problems, pp. 144-169 of A. L. Whiteman, ed., Theory of Numbers, Proc. Sympos. Pure Math., 8 (1965). Amer. Math. Soc., see p. 145, eq. (1.7).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (terms n = 1001..7000 from Vaclav Kotesovec)
- M. S. Cheema and B. Gordon, Some remarks on two- and three-line partitions, Duke Math. J., 31 (1964), 267-273.
- M. S. Cheema, Letter to N. J. A. Sloane, Jul 15 1970 [scanned copy]
- P. A. MacMahon, The connexion between the sum of the squares of the divisors and the number of partitions of a given number, Messenger Math., 54 (1924), 113-116.
- R. Newton and A. R. Camacho, Strangely dual orbifold equivalence I, arXiv preprint arXiv:1509.08069 [math.QA], 2015.
- Steven Rayan, Aspects of the topology and combinatorics of Higgs bundle moduli spaces, arXiv:1809.05732 [math.AG], 2018.
- A. G. Shannon, B. Kuloğlu, and E. Özkan, Rhaly terraced sequences their generalizations, properties and applications, Comp. Appl. Math. 44, 226 (2025). See p. 2.
Crossrefs
Programs
-
Haskell
a000990 = p $ tail a008619_list where p _ 0 = 1 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m -- Reinhard Zumkeller, Nov 06 2012
-
Magma
m:=50; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x)/(&*[1-x^j: j in [1..2*m]] )^2 )); // G. C. Greubel, Dec 06 2018 -
Maple
b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(min(i, 2)+j-1, j)* b(n-i*j, i-1), j=0..n/i))) end: a:= n-> b(n$2): seq(a(n), n=0..45); # Alois P. Heinz, Mar 15 2014
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[Min[i, 2]+j-1, j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *) Flatten[{1, Differences[Table[Sum[PartitionsP[j]*PartitionsP[n-j], {j, 0, n}], {n, 0, 50}]]}] (* Vaclav Kotesovec, Oct 28 2015 *) CoefficientList[(1-q)/QPochhammer[q]^2+O[q]^50, q] (* Jean-François Alcover, Nov 27 2015 *)
-
PARI
a(n)=if(n<0,0,polcoeff((1-x)/prod(k=1,n,1-x^k,1+x*O(x^n))^2,n)) /* Michael Somos, Jan 29 2005 */
-
PARI
{a(n)=polcoeff(exp(sum(m=1,n+1,((1+x^m)/(1-x^m+x*O(x^n)))*x^m/m)),n)} \\ Paul D. Hanna, Apr 22 2010
-
PARI
x='x+O('x^66); Vec((1-x)/eta(x)^2) \\ Joerg Arndt, May 01 2013
-
Sage
s=((1-x)/prod(1-x^j for j in (1..60))^2).series(x, 50); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 06 2018
Formula
G.f.: 1 / ( (1-x) * Product_{m>=2} (1-x^m)^2 ) = (1-x) / Product_{m>=1} (1-x^m)^2.
G.f.: exp( Sum_{n>=1} ((1+x^n)/(1-x^n))*x^n/n ). - Paul D. Hanna, Apr 22 2010
a(n) ~ Pi * exp(2*Pi*sqrt(n/3)) / (4 * 3^(5/4) * n^(7/4)). - Vaclav Kotesovec, Oct 28 2015
G.f.: exp(Sum_{k>=1} (2*sigma_1(k) - 1)*x^k/k). - Ilya Gutkovskiy, Aug 21 2018
Comments