cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A000990 Number of plane partitions of n with at most two rows.

Original entry on oeis.org

1, 1, 3, 5, 10, 16, 29, 45, 75, 115, 181, 271, 413, 605, 895, 1291, 1866, 2648, 3760, 5260, 7352, 10160, 14008, 19140, 26085, 35277, 47575, 63753, 85175, 113175, 149938, 197686, 259891, 340225, 444135, 577593, 749131, 968281, 1248320, 1604340, 2056809, 2629357, 3353404
Offset: 0

Views

Author

Keywords

Comments

Equals row sums of triangle A147767. - Gary W. Adamson, Nov 11 2008
Also number of partitions of n into parts of 2 kinds except for 1. - Reinhard Zumkeller, Nov 06 2012
Antidiagonal sums of triangle A093010.

References

  • G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004. page 105.
  • L. Carlitz, Generating functions and partition problems, pp. 144-169 of A. L. Whiteman, ed., Theory of Numbers, Proc. Sympos. Pure Math., 8 (1965). Amer. Math. Soc., see p. 145, eq. (1.7).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A row of the array in A242641.
Cf. A147767. - Gary W. Adamson, Nov 11 2008
Sequences "number of r-line partitions": A000041 (r=1), A000990 (r=2), A000991 (r=3), A002799 (r=4), A001452 (r=5), A225196 (r=6), A225197 (r=7), A225198 (r=8), A225199 (r=9).

Programs

  • Haskell
    a000990 = p $ tail a008619_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Nov 06 2012
    
  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x)/(&*[1-x^j: j in [1..2*m]] )^2 )); // G. C. Greubel, Dec 06 2018
    
  • Maple
    b:= proc(n,i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(min(i, 2)+j-1, j)*
           b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..45);  # Alois P. Heinz, Mar 15 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[Min[i, 2]+j-1, j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
    Flatten[{1, Differences[Table[Sum[PartitionsP[j]*PartitionsP[n-j], {j, 0, n}], {n, 0, 50}]]}] (* Vaclav Kotesovec, Oct 28 2015 *)
    CoefficientList[(1-q)/QPochhammer[q]^2+O[q]^50, q] (* Jean-François Alcover, Nov 27 2015 *)
  • PARI
    a(n)=if(n<0,0,polcoeff((1-x)/prod(k=1,n,1-x^k,1+x*O(x^n))^2,n)) /* Michael Somos, Jan 29 2005 */
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,((1+x^m)/(1-x^m+x*O(x^n)))*x^m/m)),n)} \\ Paul D. Hanna, Apr 22 2010
    
  • PARI
    x='x+O('x^66); Vec((1-x)/eta(x)^2) \\ Joerg Arndt, May 01 2013
    
  • Sage
    s=((1-x)/prod(1-x^j for j in (1..60))^2).series(x, 50); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 06 2018

Formula

G.f.: 1 / ( (1-x) * Product_{m>=2} (1-x^m)^2 ) = (1-x) / Product_{m>=1} (1-x^m)^2.
G.f.: exp( Sum_{n>=1} ((1+x^n)/(1-x^n))*x^n/n ). - Paul D. Hanna, Apr 22 2010
For n>=1, a(n) = A000712(n) - A000712(n-1). - Vaclav Kotesovec, Oct 28 2015
a(n) ~ Pi * exp(2*Pi*sqrt(n/3)) / (4 * 3^(5/4) * n^(7/4)). - Vaclav Kotesovec, Oct 28 2015
G.f.: exp(Sum_{k>=1} (2*sigma_1(k) - 1)*x^k/k). - Ilya Gutkovskiy, Aug 21 2018

A000991 Number of 3-line partitions of n.

Original entry on oeis.org

1, 1, 3, 6, 12, 21, 40, 67, 117, 193, 319, 510, 818, 1274, 1983, 3032, 4610, 6915, 10324, 15235, 22371, 32554, 47119, 67689, 96763, 137404, 194211, 272939, 381872, 531576, 736923, 1016904, 1397853, 1913561, 2610023, 3546507, 4802694, 6481101, 8718309, 11689929, 15627591, 20828892
Offset: 0

Views

Author

Keywords

Comments

Planar partitions into at most three rows. - Joerg Arndt, May 01 2013
Number of partitions of n where there is one sort of part 1, two sorts of part 2, and three sorts of every other part. - Joerg Arndt, Mar 15 2014

References

  • L. Carlitz, Generating functions and partition problems, pp. 144-169 of A. L. Whiteman, ed., Theory of Numbers, Proc. Sympos. Pure Math., 8 (1965). Amer. Math. Soc., see p. 145, eq. (1.8).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A row of the array in A242641.
Sequences "number of r-line partitions": A000041 (r=1), A000990 (r=2), A000991 (r=3), A002799 (r=4), A001452 (r=5), A225196 (r=6), A225197 (r=7), A225198 (r=8), A225199 (r=9).

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x)^2*(1-x^2)/(&*[1-x^j: j in [1..2*m]])^3 )); // G. C. Greubel, Dec 06 2018
    
  • Maple
    b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(min(i, 3)+j-1, j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..45);  # Alois P. Heinz, Mar 15 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[Min[i, 3]+j-1, j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Mar 20 2014, after Alois P. Heinz *)
    nmax = 40; CoefficientList[Series[(1-x)^2 * (1-x^2) * Product[1/(1-x^k)^3, {k,1,nmax}], {x,0,nmax}], x] (* Vaclav Kotesovec, Oct 28 2015 *)
  • PARI
    x='x+O('x^66); Vec((1-x)^2*(1-x^2)/eta(x)^3) \\ Joerg Arndt, May 01 2013
    
  • Sage
    R = PowerSeriesRing(ZZ, 'x')
    x = R.gen().O(50)
    s = (1-x)^2 * (1-x^2) / prod(1-x^j for j in (1..60))^3
    s.coefficients()
    # G. C. Greubel, Dec 06 2018

Formula

G.f.: (1-x)^2 * (1-x^2) / Product_(k>=1, 1-x^k )^3.
For n>=4, a(n) = A000716(n) - 2*A000716(n-1) + 2*A000716(n-3) - A000716(n-4). - Vaclav Kotesovec, Oct 28 2015
a(n) ~ Pi^3 * exp(Pi*sqrt(2*n)) / (16*n^3). - Vaclav Kotesovec, Oct 28 2015

Extensions

G.f. corrected by Sean A. Irvine, Oct 19 2011
G.f. corrected by Joerg Arndt, May 01 2013
Prepended a(0)=1, added more terms, Joerg Arndt, May 01 2013

A002799 Number of 4-line partitions of n (i.e., planar partitions of n with at most 4 lines).

Original entry on oeis.org

1, 1, 3, 6, 13, 23, 45, 78, 141, 239, 409, 674, 1116, 1794, 2882, 4544, 7131, 11031, 16983, 25844, 39124, 58680, 87538, 129578, 190830, 279140, 406334, 588026, 847034, 1213764, 1731780, 2459244, 3478185, 4898285, 6872041, 9603356, 13372607, 18553871, 25656865
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n where there is one sort of part 1, two sorts of part 2, three sorts of part 3, and four sorts of every other part. - Joerg Arndt, Mar 15 2014

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A row of the array in A242641.
Sequences "number of r-line partitions": A000041 (r=1), A000990 (r=2), A000991 (r=3), A002799 (r=4), A001452 (r=5), A225196 (r=6), A225197 (r=7), A225198 (r=8), A225199 (r=9).

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x)^3*(1-x^2)^2*(1-x^3)/(&*[1-x^j: j in [1..2*m]] )^4 )); // G. C. Greubel, Dec 06 2018
    
  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> `if`(n<5,n,4)): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; a = etr[Min[#, 4]&]; Join[{1}, Table[a[n], {n, 1, 38}]] (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
    nmax = 40; CoefficientList[Series[(1-x)^3 * (1-x^2)^2 * (1-x^3) * Product[1/(1-x^k)^4, {k,1,nmax}], {x,0,nmax}], x] (* Vaclav Kotesovec, Oct 28 2015 *)
  • PARI
    x='x+O('x^66); r=4; Vec( prod(k=1,r-1, (1-x^k)^(r-k)) / eta(x)^r ) \\ Joerg Arndt, May 01 2013
    
  • Sage
    R = PowerSeriesRing(ZZ, 'x')
    x = R.gen().O(50)
    s = (1-x)^3*(1-x^2)^2*(1-x^3)/prod(1-x^j for j in (1..60))^4
    s.coefficients() # G. C. Greubel, Dec 06 2018

Formula

Euler transform of 1, 2, 3, 4, 4, 4, ...
G.f.: (1-x)^3 * (1-x^2)^2 * (1-x^3) / Product_{k>=1} (1-x^k)^4. - Joerg Arndt, May 01 2013
a(n) ~ 2^(13/4) * Pi^6 * exp(2*Pi*sqrt(2*n/3)) / (3^(13/4) * n^(19/4)). - Vaclav Kotesovec, Oct 28 2015

Extensions

Edited and extended with formula by Christian G. Bower, Jan 01 2004
a(0)=1 prepended by Joerg Arndt, May 01 2013
Offset corrected by Vaclav Kotesovec, Oct 28 2015

A001452 Number of 5-line partitions of n.

Original entry on oeis.org

1, 1, 3, 6, 13, 24, 47, 83, 152, 263, 457, 768, 1292, 2118, 3462, 5564, 8888, 14016, 21973, 34081, 52552, 80331, 122078, 184161, 276303, 411870, 610818, 900721, 1321848, 1929981, 2805338, 4058812, 5847966, 8390097, 11990531, 17069145, 24210571, 34215537, 48190451, 67644522
Offset: 0

Views

Author

Keywords

Comments

Planar partitions into at most five rows. - Joerg Arndt, May 01 2013
Number of partitions of n where there are k sorts of parts k for k<=4 and 5 sorts all other parts. - Joerg Arndt, Mar 15 2014

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A row of the array in A242641.
Sequences "number of r-line partitions": A000041 (r=1), A000990 (r=2), A000991 (r=3), A002799 (r=4), A001452 (r=5), A225196 (r=6), A225197 (r=7), A225198 (r=8), A225199 (r=9).

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x)^4*(1-x^2)^3*(1-x^3)^2*(1-x^4)/(&*[1-x^j: j in [1..2*m]])^5 )); // G. C. Greubel, Dec 06 2018
    
  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          min(d, 5)*d, d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Mar 15 2014
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[Min[d, 5]*d, {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
    nmax = 40; CoefficientList[Series[(1-x)^4 * (1-x^2)^3 * (1-x^3)^2 * (1-x^4) * Product[1/(1-x^k)^5, {k,1,nmax}], {x,0,nmax}], x] (* Vaclav Kotesovec, Oct 28 2015 *)
  • PARI
    x='x+O('x^66); r=5; Vec( prod(k=1,r-1, (1-x^k)^(r-k)) / eta(x)^r ) \\ Joerg Arndt, May 01 2013
    
  • Sage
    R = PowerSeriesRing(ZZ, 'x')
    x = R.gen().O(50)
    s = (1-x)^4*(1-x^2)^3*(1-x^3)^2*(1-x^4)/prod(1-x^j for j in (1..60))^5
    list(s) # G. C. Greubel, Dec 06 2018

Formula

G.f.: 1 / Product_{k>=1} (1-x^k)^min(k,5). - Sean A. Irvine, Jul 24 2012
a(n) ~ 15625 * Pi^10 * sqrt(5) * exp(Pi*sqrt(10*n/3)) / (2592 * sqrt(3) * n^7). - Vaclav Kotesovec, Oct 28 2015

Extensions

More terms from Sean A. Irvine, Jul 24 2012
a(0)=1 prepended by Joerg Arndt, May 01 2013

A225196 Number of 6-line partitions of n (i.e., planar partitions of n with at most 6 lines).

Original entry on oeis.org

1, 1, 3, 6, 13, 24, 48, 85, 157, 274, 481, 816, 1388, 2298, 3798, 6170, 9968, 15895, 25209, 39550, 61703, 95431, 146757, 224036, 340189, 513233, 770415, 1149933, 1708277, 2524846, 3715285, 5441762, 7937671, 11529512, 16681995, 24043245, 34527521, 49404590, 70452001, 100128249
Offset: 0

Views

Author

Joerg Arndt, May 01 2013

Keywords

Comments

Number of partitions of n where there are k sorts of parts k for k<=5 and six sorts of all other parts. - Joerg Arndt, Mar 15 2014

Crossrefs

Sequences "number of r-line partitions": A000041 (r=1), A000990 (r=2), A000991 (r=3), A002799 (r=4), A001452 (r=5), A225196 (r=6), A225197 (r=7), A225198 (r=8), A225199 (r=9).
A row of the array in A242641.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x)^5*(1-x^2)^4*(1-x^3)^3*(1-x^4)^2*(1-x^5)/(&*[1-x^j: j in [1..2*m]] )^6 )); // G. C. Greubel, Dec 06 2018
    
  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          min(d, 6)*d, d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Mar 15 2014
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[Min[d, 6]*d, {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Feb 18 2015, Alois P. Heinz *)
    m:=50; CoefficientList[Series[(1-x)^5*(1-x^2)^4*(1-x^3)^3*(1-x^4)^2*(1-x^5)/( Product[(1-x^j), {j,1,m}])^6, {x,0,m}],x] (* G. C. Greubel, Dec 06 2018 *)
  • PARI
    x='x+O('x^66); r=6; Vec( prod(k=1,r-1, (1-x^k)^(r-k)) / eta(x)^r )
    
  • Sage
    R = PowerSeriesRing(ZZ,'x')
    x = R.gen().O(50)
    s = (1-x)^5*(1-x^2)^4*(1-x^3)^3*(1-x^4)^2*(1-x^5)/prod(1-x^j for j in (1..60))^6
    s.coefficients() # G. C. Greubel, Dec 06 2018

Formula

G.f.: 1/Product_{n>=1} (1-x^n)^min(n,6). - Joerg Arndt, Mar 15 2014
a(n) ~ 2160 * Pi^15 * exp(2*Pi*sqrt(n)) / n^(39/4). - Vaclav Kotesovec, Oct 28 2015
G.f.: (1-x)^5*(1-x^2)^4*(1-x^3)^3*(1-x^4)^2*(1-x^5)/( Prod_{j>=1} (1-x^j ) )^6. - G. C. Greubel, Dec 06 2018

A225197 Number of 7-line partitions of n (i.e., planar partitions of n with at most 7 lines).

Original entry on oeis.org

1, 1, 3, 6, 13, 24, 48, 86, 159, 279, 492, 840, 1436, 2394, 3980, 6510, 10586, 17001, 27148, 42908, 67424, 105067, 162786, 250427, 383186, 582663, 881521, 1326319, 1986118, 2959376, 4390175, 6483255, 9534945, 13964910, 20374513, 29612085, 42883238, 61880879, 88993610, 127560266
Offset: 0

Views

Author

Joerg Arndt, May 01 2013

Keywords

Comments

Number of partitions of n where there are k sorts of parts k for k<=6 and seven sorts of all other parts. - Joerg Arndt, Mar 15 2014

Crossrefs

A row of the array in A242641.
Sequences "number of r-line partitions": A000041 (r=1), A000990 (r=2), A000991 (r=3), A002799 (r=4), A001452 (r=5), A225196 (r=6), A225197 (r=7), A225198 (r=8), A225199 (r=9).

Programs

  • Magma
    m:=50; r:=7; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1-x^k)^(r-k): k in [1..r-1]])/(&*[1-x^j: j in [1..2*m]] )^r )); // G. C. Greubel, Dec 06 2018
    
  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          min(d, 7)*d, d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Mar 15 2014
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[Min[d, 7]*d, {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)
    m:=50; r:=7; CoefficientList[Series[Product[(1-x^k)^(r-k),{k,1,r-1}]/( Product[(1-x^j), {j,1,m}])^r, {x,0,m}],x] (* G. C. Greubel, Dec 06 2018 *)
  • PARI
    x='x+O('x^66); r=7; Vec( prod(k=1,r-1, (1-x^k)^(r-k)) / eta(x)^r )
    
  • Sage
    m=50; r=7
    R = PowerSeriesRing(ZZ, 'x')
    x = R.gen().O(m)
    s = prod((1-x^k)^(r-k) for k in (1..r-1))/prod(1-x^j for j in (1..m+2))^7
    s.coefficients() # G. C. Greubel, Dec 06 2018

Formula

G.f.: 1/Product_{n>=1}(1-x^n)^min(n,7). - Joerg Arndt, Mar 15 2014
a(n) ~ 346032180025 * Pi^21 * sqrt(7) * exp(Pi*sqrt(14*n/3)) / (69984 * sqrt(3) * n^13). - Vaclav Kotesovec, Oct 28 2015

A225198 Number of 8-line partitions of n (i.e., planar partitions of n with at most 8 lines).

Original entry on oeis.org

1, 1, 3, 6, 13, 24, 48, 86, 160, 281, 497, 851, 1460, 2442, 4076, 6692, 10928, 17623, 28266, 44873, 70842, 110910, 172674, 266942, 410512, 627387, 954113, 1443063, 2172456, 3254446, 4854236, 7208018, 10659872, 15700111, 23035956, 33671399, 49042600, 71179250, 102963936, 148452294
Offset: 0

Views

Author

Joerg Arndt, May 01 2013

Keywords

Comments

Number of partitions of n where there are k sorts of parts k for k<=7 and eight sorts of all other parts. - Joerg Arndt, Mar 15 2014

Crossrefs

A row of the array in A242641.
Sequences "number of r-line partitions": A000041 (r=1), A000990 (r=2), A000991 (r=3), A002799 (r=4), A001452 (r=5), A225196 (r=6), A225197 (r=7), A225198 (r=8), A225199 (r=9).

Programs

  • Magma
    m:=50; r:=8; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1-x^k)^(r-k): k in [1..r-1]])/(&*[1-x^j: j in [1..2*m]] )^r )); // G. C. Greubel, Dec 10 2018
    
  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          min(d, 8)*d, d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Mar 15 2014
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[Min[d, 8]*d, {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)
    m:=50; r:=8; CoefficientList[Series[Product[(1-x^k)^(r-k),{k,1,r-1}]/( Product[(1-x^j), {j,1,m}])^r, {x,0,m}],x] (* G. C. Greubel, Dec 10 2018 *)
  • PARI
    x='x+O('x^66); r=8; Vec( prod(k=1,r-1, (1-x^k)^(r-k)) / eta(x)^r )
    
  • Sage
    m=50; r=8
    R = PowerSeriesRing(ZZ, 'x')
    x = R.gen().O(m)
    s = prod((1-x^k)^(r-k) for k in (1..r-1))/prod(1-x^j for j in (1..m+2))^r
    s.coefficients() # G. C. Greubel, Dec 10 2018

Formula

G.f.: 1/Product_{n>=1}(1-x^n)^min(n,8). - Joerg Arndt, Mar 15 2014
a(n) ~ 7696581394432000 * sqrt(2) * Pi^28 * exp(4*Pi*sqrt(n/3)) / (19683 * 3^(1/4) * n^(67/4)). - Vaclav Kotesovec, Oct 28 2015

A225199 Number of 9-line partitions of n (i.e., planar partitions of n with at most 9 lines).

Original entry on oeis.org

1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 499, 856, 1471, 2466, 4124, 6788, 11110, 17965, 28890, 45995, 72819, 114354, 178577, 276952, 427279, 655199, 999773, 1517388, 2292377, 3446462, 5159352, 7689517, 11414606, 16875813, 24856366, 36474188, 53334376, 77717219, 112874158, 163403202
Offset: 0

Views

Author

Joerg Arndt, May 01 2013

Keywords

Comments

Number of partitions of n where there are k sorts of parts k for k<=8 and nine sorts of all other parts. - Joerg Arndt, Mar 15 2014
In general, "number of r-line partitions" is asymptotic to (Product_{j=1..r-1} j!) * Pi^(r*(r-1)/2) * r^((r^2 + 1)/4) * exp(Pi*sqrt(2*n*r/3)) / (2^((r*(r+2)+5)/4) * 3^((r^2 + 1)/4) * n^((r^2 + 3)/4)). - Vaclav Kotesovec, Oct 28 2015

Crossrefs

A row of the array in A242641.
Sequences "number of r-line partitions": A000041 (r=1), A000990 (r=2), A000991 (r=3), A002799 (r=4), A001452 (r=5), A225196 (r=6), A225197 (r=7), A225198 (r=8), A225199 (r=9).

Programs

  • Magma
    m:=50; r:=9; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1-x^k)^(r-k): k in [1..r-1]])/(&*[1-x^j: j in [1..2*m]] )^r )); // G. C. Greubel, Dec 10 2018
    
  • Maple
    b:= proc(n,i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(min(i, 9)+j-1, j)*
           b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Mar 15 2014
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[Min[d, 9]*d, {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)
    m:=50; r:=9; CoefficientList[Series[Product[(1-x^k)^(r-k),{k,1,r-1}]/( Product[(1-x^j), {j,1,m}])^r, {x,0,m}],x] (* G. C. Greubel, Dec 10 2018 *)
  • PARI
    x='x+O('x^66); r=9; Vec( prod(k=1,r-1, (1-x^k)^(r-k)) / eta(x)^r )
    
  • Sage
    m=50; r=9
    R = PowerSeriesRing(ZZ, 'x')
    x = R.gen().O(m)
    s = (prod((1-x^k)^(r-k) for k in (1..r-1))/prod(1-x^j for j in (1..m+2))^r)
    s.coefficients() # G. C. Greubel, Dec 10 2018

Formula

G.f.: 1/Product_{n>=1}(1-x^n)^min(n,9). - Joerg Arndt, Mar 15 2014
a(n) ~ 2101805306799541875 * sqrt(3) * Pi^36 * exp(Pi*sqrt(6*n)) / (8*n^21). [The convergence is very slow, numerical verification needs more than 1000000 terms.] - Vaclav Kotesovec, Oct 28 2015

A242643 a(n) = Sum_{d|n, d <= 6} d^2 + 6*Sum_{d|n, d>6} d.

Original entry on oeis.org

1, 5, 10, 21, 26, 50, 43, 69, 64, 90, 67, 138, 79, 131, 125, 165, 103, 212, 115, 226, 178, 203, 139, 330, 176, 239, 226, 315, 175, 405, 187, 357, 274, 311, 278, 516, 223, 347, 322, 514, 247, 554, 259, 483, 449, 419, 283, 714, 337, 540, 418, 567, 319, 698, 422, 699, 466, 527, 355, 973, 367, 563, 610, 741, 494, 842
Offset: 1

Views

Author

N. J. A. Sloane, May 21 2014

Keywords

References

  • P. A. MacMahon, The connexion between the sum of the squares of the divisors and the number of partitions of a given number, Messenger Math., 54 (1924), 113-116. Collected Papers, MIT Press, 1978, Vol. I, pp. 1364-1367. See Table I. Note that the entry 53 should be 50.

Crossrefs

A row of the array in A242641.

Programs

  • Mathematica
    sd6[n_]:=Module[{d=Divisors[n]},Total[Select[d,#<7&]^2]+6Total[Select[ d,#>6&]]];Array[sd6,70] (* Harvey P. Dale, Mar 18 2015 *)

Extensions

Typo in definition corrected by N. J. A. Sloane, Mar 18 2015

A242642 Triangle read by rows: T(s,n) (n>=1, 1 <= s <= n) = number of s-line partitions of n.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 5, 10, 12, 13, 7, 16, 21, 23, 24, 11, 29, 40, 45, 47, 48, 15, 45, 67, 78, 83, 85, 86, 22, 75, 117, 141, 152, 157, 159, 160, 30, 115, 193, 239, 263, 274, 279, 281, 282, 42, 181, 319, 409, 457, 481, 492, 497, 499, 500, 56, 271, 510, 674, 768, 816, 840, 851, 856, 858, 859
Offset: 1

Views

Author

N. J. A. Sloane, May 21 2014

Keywords

Examples

			Triangle begins:
[1]
[2, 3]
[3, 5, 6]
[5, 10, 12, 13]
[7, 16, 21, 23, 24]
[11, 29, 40, 45, 47, 48]
[15, 45, 67, 78, 83, 85, 86]
[22, 75, 117, 141, 152, 157, 159, 160]
...
The square array (A242641 with n=0 column omitted) begins:
1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, ...
1, 3, 5, 10, 16, 29, 45, 75, 115, 181, 271, 413, ...
1, 3, 6, 12, 21, 40, 67, 117, 193, 319, 510, 818, ...
1, 3, 6, 13, 23, 45, 78, 141, 239, 409, 674, 1116, ...
1, 3, 6, 13, 24, 47, 83, 152, 263, 457, 768, 1292, ...
1, 3, 6, 13, 24, 48, 85, 157, 274, 481, 816, 1388, ...
1, 3, 6, 13, 24, 48, 86, 159, 279, 492, 840, 1436, ...
...
		

Crossrefs

Upper triangle of array in A242641 (with the n=0 column omitted).

Programs

  • Maple
    T:= proc(s, n) option remember; `if`(n=0, 1, add(add(min(d, s)
          *d, d=numtheory[divisors](j))*T(s, n-j), j=1..n)/n)
        end:
    seq(seq(T(s, n), s=1..n), n=1..14);  # Alois P. Heinz, Oct 02 2018
  • Mathematica
    T[s_, n_] := T[s, n] = If[n==0, 1, Sum[Sum[Min[d, s]*d, {d, Divisors[j]}]* T[s, n - j], {j, 1, n}]/n];
    Table[Table[T[s, n], {s, 1, n}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Dec 10 2019, after Alois P. Heinz *)
Showing 1-10 of 10 results.