cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A295330 Decimal expansion of sqrt(13)/2.

Original entry on oeis.org

1, 8, 0, 2, 7, 7, 5, 6, 3, 7, 7, 3, 1, 9, 9, 4, 6, 4, 6, 5, 5, 9, 6, 1, 0, 6, 3, 3, 7, 3, 5, 2, 4, 7, 9, 7, 3, 1, 2, 5, 6, 4, 8, 2, 8, 6, 9, 2, 2, 6, 2, 3, 1, 0, 6, 3, 5, 5, 2, 2, 6, 5, 2, 8, 1, 1, 3, 5, 8, 3, 4, 7, 4, 1, 4, 6, 5, 0, 5, 2, 2, 2, 6, 0, 2, 3, 0, 9, 5, 4, 1, 0, 0, 9, 2, 4, 5, 3, 5, 8
Offset: 1

Views

Author

Wolfdieter Lang, Nov 20 2017

Keywords

Comments

In a regular hexagon inscribed in a circle of radius R the largest distance between any vertex and a midpoint of a side, after division of R, is sqrt(13)/2. The two smaller distance ratios are sqrt(7)/2 = A242703 and 1/2.
The regular period 6 continued fraction of sqrt(13)/2 is [1; 1, 4, 14, 4, 1, 2], and the convergents are given in A295331/A295332.
Essentially the same as A223139, A209927, A098316 and A085550. - R. J. Mathar, Nov 23 2017

Examples

			1.8027756377319946465596106337352479731256482869226231063552265281135834741465...
		

Crossrefs

Programs

A294972 Numerators of continued fraction convergents to sqrt(7)/2.

Original entry on oeis.org

1, 4, 41, 127, 295, 1012, 10415, 32257, 74929, 257044, 2645369, 8193151, 19031671, 65288164, 671913311, 2081028097, 4833969505, 16582936612, 170663335625, 528572943487, 1227809222599, 4212000611284, 43347815335439, 134255446617601, 311858708570641, 1069831572329524, 11010174431865881
Offset: 0

Views

Author

Wolfdieter Lang, Nov 18 2017

Keywords

Comments

The denominators are given in A294973.
The continued fraction expansion of sqrt(7)/2 is 1, repeat(3, 10, 3, 2).

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[7]/2, 30]] (* Vaclav Kotesovec, Nov 19 2017 *)
  • PARI
    Vec((1 + 4*x + 41*x^2 + 127*x^3 + 41*x^4 - 4*x^5 + x^6 - x^7) / ((1 - 16*x^2 + x^4)*(1 + 16*x^2 + x^4)) + O(x^40)) \\ Colin Barker, Nov 21 2017

Formula

From Colin Barker, Nov 19 2017: (Start)
G.f.: (1 + 4*x + 41*x^2 + 127*x^3 + 41*x^4 - 4*x^5 + x^6 - x^7) / ((1 - 16*x^2 + x^4)*(1 + 16*x^2 + x^4)).
a(n) = 254*a(n-4) - a(n-8) for n > 7.
(End)
The proof of the g.f. runs like the one given for the denominators in A294973. The recurrence for a(n) is the same but the input is now a(0) = b(0) = 1 and a(-1) = 1, (a(-2) = 0). - Wolfdieter Lang, Nov 19 2017

A294973 Denominators of the continued fraction convergents to sqrt(7)/2.

Original entry on oeis.org

1, 3, 31, 96, 223, 765, 7873, 24384, 56641, 194307, 1999711, 6193440, 14386591, 49353213, 507918721, 1573109376, 3654137473, 12535521795, 129009355423, 399563588064, 928136531551, 3183973182717, 32767868358721, 101487578258880, 235743024876481, 808716652888323, 8322909553759711, 25777445314167456, 59877800182094623, 205410845860451325
Offset: 0

Views

Author

Wolfdieter Lang, Nov 18 2017

Keywords

Comments

The numerators are given in A294972.
The continued fraction of sqrt(7)/2 is [1, repeat(3,10,3,2)].

Crossrefs

Programs

  • Mathematica
    Denominator[Convergents[Sqrt[7]/2, 30]] (* Vaclav Kotesovec, Nov 19 2017 *)
  • PARI
    Vec((1 + 3*x - x^2)*(1 + 32*x^2 + x^4) / ((1 - 16*x^2 + x^4)*(1 + 16*x^2 + x^4)) + O(x^40)) \\ Colin Barker, Nov 21 2017

Formula

From Colin Barker, Nov 19 2017: (Start)
G.f.: (1 + 3*x - x^2)*(1 + 32*x^2 + x^4) / ((1 - 16*x^2 + x^4)*(1 + 16*x^2 + x^4)).
a(n) = 254*a(n-4) - a(n-8) for n > 7.
(End)
The g.f. is correct: denominator recurrence a(n) = b(n)*a(n-1) + a(n-2), a(-1) = 0, a(0) = 1, (a(-2) = a(0) = 1) with b(n) modulo 4 from the continued fraction given above: b(0) = 1, b(4*(k+1)) = 2, b(4*k+1) = 3 = b(4*k+3) and b(4*k+2) = 10, for k >= 0. The 4-section is G(x) = Sum_{k>=0} a(k)*x^k = G_0(x^4) + x*G_1(x^4) + x^2*G_2(x^4) + x^3*G_3(x^4) with G_j(x) = Sum_{k>=0} a(4*k+j)*x^k, for j=0..3. The recurrence leads to four equations (omit the x here): G_1 = 3*G_0 + x*G_3, G_2 = 10*G_1 + G_4, G_3 = 3*G_2 + G_1, G_0 = 2*x*G_3 +1 + x*G_2 (using a(-2) = 1). This can be solved to obtain for G(x) = (1 + 3*x + 31*x^2 + 96*x^3 - 31*x^4 + 3*x^5 - x^6)/(1 - 254*x^4 + x^8), and the numerator and denominator factorize like given in the above conjecture. - Wolfdieter Lang, Nov 19 2017
Showing 1-3 of 3 results.