A242719 Smallest even k such that lpf(k-3) > lpf(k-1) >= prime(n), where lpf=least prime factor (A020639).
10, 26, 50, 170, 170, 362, 362, 842, 842, 1370, 1370, 1850, 1850, 2210, 3722, 3722, 3722, 4892, 5042, 7082, 7922, 7922, 7922, 10610, 10610, 10610, 11450, 13844, 16130, 16130, 17162, 19322, 19322, 24614, 24614, 25592, 29504, 29930, 29930, 36020, 36020
Offset: 2
Keywords
Links
- Jinyuan Wang, Table of n, a(n) for n = 2..5000 (terms 2..2001 from Peter J. C. Moses).
Crossrefs
Programs
-
Mathematica
lpf[k_] := FactorInteger[k][[1, 1]]; a[n_] := a[n] = For[k = If[n == 2, 10, a[n-1]], True, k = k+2, If[lpf[k-3] > lpf[k-1] >= Prime[n], Return[k]]]; Array[a, 50, 2] (* Jean-François Alcover, Nov 06 2018 *)
-
PARI
lpf(k) = factorint(k)[1,1]; vector(50, n, k=6; while(lpf(k-3)<=lpf(k-1) || lpf(k-1)
Colin Barker, Jun 01 2014
Formula
Conjecturally, a(n) ~ (prime(n))^2, as n goes to infinity (cf. A246748, A246819). - Vladimir Shevelev, Sep 02 2014
a(n) = prime(n)^2 + 1 for and only for numbers n>=2 which are in A137291. - Vladimir Shevelev, Sep 04 2014
Comments