cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A246748 Numbers n such that A242719(n) = (prime(n))^2+1 and A242720(n) - A242719(n) = 2*(prime(n)+1).

Original entry on oeis.org

3, 52, 104, 209, 343, 373, 398, 473, 628, 2633, 3273, 7538, 8060, 8813, 9025, 10847, 12493, 13768, 14196, 15486, 16865, 17486, 18362, 18613, 18842, 21175, 23522, 31825, 33537, 34507, 38740, 39603, 41802, 41947, 43314, 45479, 47550, 47668, 47787, 50321, 50682
Offset: 1

Views

Author

Vladimir Shevelev, Sep 02 2014

Keywords

Comments

If the sequence is infinite, then lim inf(A242719(k)/(prime(k))^2) = 1 and lim inf(A242720(k)/(prime(k))^2) = 1.
In connection with this, one can conjecture that A242719(k) ~ A242720(k) ~ (prime(k))^2, as k goes to infinity (cf. A246819, A246821).
n is in the sequence if and only if prime(n)>=5 and is in the intersection of A001359, A062326, A157468.
Proof. Firstly note that A242719(n) = prime(n)^2 + 1 if and only if prime(n)^2 - 2 is prime. Indeed, let prime(n)^2 + 1 be A242719(n). Then we have lpf(prime(n)^2 - 2) > lpf(prime(n)^2) = prime(n). It is possible only when prime(n)^2 - 2 is prime, i. e., prime(n) is in A062326. Add that prime(n)^2+1 is the smallest value of A242719(n).
Let A242720(n) = A242719(n) + 2*prime(n) + 2 = prime(n)^2 + 2*prime(n) + 3. Then, by the definition of A242720, we have lpf(prime(n)^2 + 2*prime(n) + 2) > lpf(prime(n)*(prime(n)+2)) >= prime(n). Thus prime(n) + 2 is prime, i.e., prime(n) is in A001359. Besides, lpf(prime(n)^2 + 2*prime(n) + 2) > prime(n), or lpf((prime(n)+1)^2 + 1) >= prime(n+1) = prime(n) + 2. So (prime(n)+1)^2+1 is prime, i.e., prime(n) is also in A157468.
Add that, for n>=3, N=prime(n)^2 + 2*prime(n) + 3 is the smallest possible value of A242720(n). Indeed, let prime(n)^2+1 <= N <= prime(n)^2 + 2*prime(n) + 2. Then prime(n)^2-2 <= N - 3 <= prime(n)^2 + 2*prime(n) - 1. Since it should be lpf(N-3) >= prime(n), then there are only two possibilities: N-3 = prime(n)^2 + prime(n) or N-3 = prime(n)^2. However, lpf(prime(n)^2 + prime(n)) = 2, while, although lpf(prime(n)^2) = prime(n), however, in this case, lpf(N-1) = lpf(prime(n)^2+2) = 3, n>=3, and, so the inequalities lpf(N-1) > lpf(N-3) >= prime(n) are impossible in the considered cases for n>=3. - Vladimir Shevelev, Sep 03 2014

Crossrefs

Extensions

More terms from Peter J. C. Moses, Sep 02 2014

A242847 Numbers n for which A242719(n) > A242720(n).

Original entry on oeis.org

19, 35, 38, 41, 45, 50, 53, 56, 57, 58, 59, 63, 76, 77, 78, 79, 80, 81, 83, 84, 85, 92, 93, 95, 96, 108, 109, 112, 113, 116, 117, 124, 125, 126, 142, 143, 146, 154, 157, 173, 184, 185, 186, 193, 194, 195, 196, 197, 203, 215, 217, 224, 227, 232, 233, 237, 241
Offset: 1

Views

Author

Vladimir Shevelev, Jun 02 2014

Keywords

Comments

The sequence is infinite, in view of a strong closeness between counting functions of numbers N_1 for which lpf(N_1-3) > lpf(N_1-1) >= prime(n) and numbers N_2 for which lpf(N_2-1) > lpf(N_2-3) >= prime(n), if {N_2-3, N_2-1} is not a pair of twin primes, where p_n=prime(n) and lpf=least prime factor (A020639). (Cf., for example, A243803-A243804). This closeness is explained by a somewhat symmetry (for details, see Shevelev's link).
However, it is very interesting to find an analytical proof of infinity of this and complementory sequences.

Crossrefs

Programs

  • Mathematica
    lpf[k_] := FactorInteger[k][[1, 1]];
    a19[n_ /; n>1] := a19[n] = For[k = If[n == 2, 10, a19[n-1]], True, k = k+2, If[lpf[k-3] > lpf[k-1] >= Prime[n], Return[k]]];
    a20[n_ /; n>1] := a20[n] = For[k = If[n <= 2, 2, a20[n-1]], True, k = k+2, If[Not[PrimeQ[k-3] && PrimeQ[k-1]] && lpf[k-1] > lpf[k-3] >= Prime[n], Return[k]]];
    Select[Range[250], a19[#] > a20[#]&] (* Jean-François Alcover, Nov 06 2018 *)

Extensions

More terms from Peter J. C. Moses, Jun 02 2014

A246819 Max_{2<=k<=n} floor(A242719(k)/prime(k)) - prime(n).

Original entry on oeis.org

0, 0, 0, 4, 2, 4, 2, 13, 7, 13, 7, 4, 2, 0, 17, 11, 9, 6, 2, 24, 21, 17, 11, 12, 8, 6, 2, 18, 29, 15, 11, 5, 3, 16, 14, 8, 18, 14, 8, 22, 20, 10, 30, 29, 27, 15, 3, 6, 8, 4, 0, 30, 20, 14, 60, 54, 52, 46, 42, 40, 30, 16, 12, 10, 41, 27, 21, 11, 20, 16, 10, 6
Offset: 2

Views

Author

Vladimir Shevelev, Sep 04 2014

Keywords

Comments

Conjecture: a(n) = o(prime(n)), as n goes to infinity.
If the conjecture is true, then A242719(n) ~ prime(n)^2. Indeed, A242719(n) >= prime(n)^2 + 1; on the other hand, by the conjecture, we have A242719(n)/prime(n) <= a(n) + 1 + prime(n) = prime(n)*(1+o(1)).

Crossrefs

Extensions

More terms from Peter J. C. Moses, Sep 04 2014

A247011 Numbers n for which A242719(n) = (prime(n) + 2)^2 + 1.

Original entry on oeis.org

5, 7, 13, 17, 26, 33, 64, 81, 98, 140, 171, 176, 190, 201, 215, 225, 318, 332, 336, 444, 469, 475, 495, 551, 558, 563, 577, 601, 636, 671, 828, 849, 862, 870, 948, 1004, 1064, 1074, 1189, 1198, 1230, 1238, 1305, 1328, 1445, 1449, 1528, 1618, 1634, 1642, 1679
Offset: 1

Views

Author

Vladimir Shevelev, Sep 09 2014

Keywords

Comments

(prime(n) + 2)^2 + 1 is the second minimal possible value of A242719(n) after prime(n)^2 + 1. Indeed, by the definition lpf(A242719(n) - 3) > lpf(A242719(n) - 1) >= prime(n), thus after prime(n)^2 + 1 we should consider prime(n)*(prime(n) + 2) + 1. Then prime(n) should be lesser number of twin primes, but then prime(n) + 1 == 0 (mod 3). So, prime(n)*(prime(n) + 2) - 2 == 0 (mod 3). Analogously one can prove that prime(n)*(prime(n) + 4) - 2 == 0 (mod 3).
Note that for the sequence prime(n+1) is in intersection of A006512 and A062326, but prime(n) is not in A062326.

Crossrefs

Formula

If prime(n) is not in A062326, then A242719(n) >= (prime(n)+2)^2 + 1.
Intersection of A247011 and A246824 forms sequence 81, 215, 828, 1189, 1634, ... For these values of n we have A242719(n) - A242720(n) = 2*(prime(n) + 1).

Extensions

More terms from Peter J. C. Moses, Sep 09 2014

A245363 Numbers n for which A242719(n) = prime(n)*(prime(n)+6) + 1.

Original entry on oeis.org

19, 37, 49, 69, 73, 102, 165, 236, 253, 365, 465, 542, 595, 694, 713, 723, 762, 920, 962, 979, 1119, 1162, 1259, 1334, 1387, 1441, 1706, 1797, 1843, 1906
Offset: 1

Views

Author

Vladimir Shevelev, Sep 09 2014

Keywords

Comments

These are such numbers n for which prime(n), prime(n)+6, prime(n)*(prime(n)+6)-2 are primes, but prime(n) is not in A062326; besides, if prime(n) is in A001359, then also prime(n+1) is not in A062326.
Prime(n)*(prime(n)+6) + 1 is the third minimal possible value of A242719(n) after prime(n)^2 + 1 and (prime(n)+2)^2 + 1 (cf. A247011 and comment there).

Crossrefs

Formula

prime(n) == 7 (mod 10), A242719(n) == 92 (mod 100).

Extensions

More terms from Peter J. C. Moses, Sep 09 2014

A243960 Primes that do not divide the numbers of the form A242719(n)-1.

Original entry on oeis.org

2, 11, 17, 23, 31, 41, 53, 59, 79, 83, 101, 113, 137, 149, 167, 179, 197, 229, 251, 263, 269, 281, 283, 311, 317, 331, 349, 383, 433, 439, 457, 461, 463, 479, 487, 499, 503, 509, 521, 547, 577, 593, 599, 619, 641, 661, 673, 683, 691, 709, 739, 769, 787, 809
Offset: 1

Views

Author

Vladimir Shevelev, Jun 16 2014

Keywords

Comments

If a prime p=prime(k) does not divide A242719(i)-1 for i=2,3,...,k, then it is in the sequence.

Crossrefs

Cf. A242719.

Extensions

More terms from Peter J. C. Moses, Jun 17 2014

A246501 a(n) is the smallest term of A242719 that is repeated exactly n times, or 0 if there is no such term.

Original entry on oeis.org

10, 170, 3722, 85040, 273530, 9010484, 3659570, 22972850, 1875409412, 2023830170
Offset: 1

Views

Author

Vladimir Shevelev, Aug 27 2014

Keywords

Comments

We conjecture that, for all n, a(n)>0.
Integer parts of sqrt(a(n)-1) are 3,13,61,291,523,3001,1913,4793,... (as for all terms of A242719, if a(n)-1 is perfect square, then sqrt(a(n)-1) is prime).

Crossrefs

Extensions

More terms from Peter J. C. Moses, Aug 27 2014
a(9)-a(10) from Jinyuan Wang, Mar 13 2020

A247279 Numbers n such that A242720(n) = prime(n)*(prime(n)+4)+3 and A242719(n) - A242720(n) = 2*(prime(n)-1).

Original entry on oeis.org

19, 920, 2869, 4704, 8125, 10194, 10939, 17588, 22661, 29856, 31178, 31779, 53624, 59035, 61931, 66944, 72104, 81247, 91456, 98840, 103631, 106187, 117959, 123535, 131824, 133446, 168209, 184888, 189389, 214743, 215352, 218421, 218799, 227088, 237917, 245854
Offset: 1

Views

Author

Keywords

Comments

The sequence is infinite if there are infinitely many primes p_n such that p_n+4, p_n+6, p_n*(p_n+4)+2, p_n*(p_n+6)-2 are primes, but p_n^2-2 is not prime.
If the sequence A246748 is also infinite, then these two sequences show that the difference A242720(n) - A242719(n) changes its sign infinitely many times.

Examples

			If n=920, prime(920)=7207, we have A242720(920) = 7207*7211+3 = 51969680 and A242919(920) -  A242920(920) = 51984092 - 51969680 = 14412 = 2*(prime(920)-1).
		

Crossrefs

Formula

Intersection of A245363 and A247280.

A243199 Let A242719(n)-1 = prime(l)*prime(m), l<=m; a(n)=m-l.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 2, 1, 4, 0, 0, 4, 4, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 4, 5, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 2

Views

Author

Vladimir Shevelev, Jun 01 2014

Keywords

Crossrefs

Extensions

More terms from Peter J. C. Moses, Jun 01 2014

A242758 Smallest even k such that lpf(k-1) > lpf(k-3) >= prime(n), where lpf=least prime factor (A020639).

Original entry on oeis.org

6, 8, 14, 14, 20, 20, 32, 32, 32, 44, 44, 44, 62, 62, 62, 62, 74, 74, 74, 104, 104, 104, 104, 104, 104, 110, 110, 140, 140, 140, 140, 140, 152, 152, 182, 182, 182, 182, 182, 182, 194, 194, 200, 200, 230, 230, 230, 230, 242, 242, 242, 272, 272, 272, 272, 272
Offset: 2

Views

Author

Vladimir Shevelev, May 22 2014

Keywords

Comments

This is a version of A242720 with the absolute minima of k in the definition. The sequence is nondecreasing. Hypothetically, every pair {a(n)-3, a(n)-1} is a pair of twin primes.
If there exist infinitely many n such that a(n) < A242719(n) < a(n)^2, then from the result in the Shevelev link, it follows that for such n the set of numbers {even k: lpf(k-1) > lpf(k-3) >= prime(n)} either attains the absolute minimum of a(n) only in the case when {a(n)-3, a(n)-1} are twin primes, or does not attain it at all. Therefore, if there is only a finite number of twin primes, we have a contradiction. Thus the above condition is sufficient for infinity of twin primes.
Note also that, if there is only a finite number of twin primes, then after the last pair of them, this sequence will coincide with A242720. Then, in order to avoid a contradiction (again according to the Shevelev link), we should accept that there exists a number N_0 such that, for every n >= N_0, the following inequality holds: max(A242719(n),A242720(n)) > (min(A242719(n),A242720(n)))^2. - Vladimir Shevelev, May 24 2014
It is easy to prove that min(A242719(n), A242720(n)) >= prime(n)^2+1, while we conjecture that max(A242719(n), A242720(n)) <= prime(n)^4. Thus this conjecture implies there are infinitely many twin primes. - Vladimir Shevelev, Jun 01 2014

Crossrefs

Programs

  • Mathematica
    lpf[k_] := FactorInteger[k][[1, 1]];
    a[n_] := a[n] = For[k = If[n == 2, 2, a[n-1]], True, k = k+2, If[lpf[k-1] > lpf[k-3] >= Prime[n], Return[k]]];
    Table[a[n], {n, 2, 100}] (* Jean-François Alcover, Nov 03 2018 *)
  • PARI
    lpf(k) = factorint(k)[1,1];
    vector(100, n, k=6; while(lpf(k-1)<=lpf(k-3) || lpf(k-3)Colin Barker, Jun 01 2014
Showing 1-10 of 28 results. Next